Cargando…
scClassify: sample size estimation and multiscale classification of cells using single and multiple reference
Automated cell type identification is a key computational challenge in single‐cell RNA‐sequencing (scRNA‐seq) data. To capitalise on the large collection of well‐annotated scRNA‐seq datasets, we developed scClassify, a multiscale classification framework based on ensemble learning and cell type hier...
Autores principales: | Lin, Yingxin, Cao, Yue, Kim, Hani Jieun, Salim, Agus, Speed, Terence P, Lin, David M, Yang, Pengyi, Yang, Jean Yee Hwa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306901/ https://www.ncbi.nlm.nih.gov/pubmed/32567229 http://dx.doi.org/10.15252/msb.20199389 |
Ejemplares similares
-
scReClassify: post hoc cell type classification of single-cell rNA-seq data
por: Kim, Taiyun, et al.
Publicado: (2019) -
scFeatures: multi-view representations of single-cell and spatial data for disease outcome prediction
por: Cao, Yue, et al.
Publicado: (2022) -
Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data
por: Kim, Daniel, et al.
Publicado: (2023) -
RUV-III-NB: normalization of single cell RNA-seq data
por: Salim, Agus, et al.
Publicado: (2022) -
scMAGIC: accurately annotating single cells using two rounds of reference-based classification
por: Zhang, Yu, et al.
Publicado: (2022)