Cargando…

Hyperoxia reduces STX17 expression and inhibits the autophagic flux in alveolar type II epithelial cells in newborn rats

Supplemental oxygen therapy can be life-saving for premature infants. Our previous study revealed a defect in the autophagic flux in the lung tissues of neonatal rats with hyperoxia-induced bronchopulmonary dysplasia (BPD), but the underlying mechanism remains unknown. Moreover, there are few innova...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Dan, Zhao, Xinyi, Zhang, Dingning, Gao, Siyang, Xue, Xindong, Fu, Jianhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307846/
https://www.ncbi.nlm.nih.gov/pubmed/32467992
http://dx.doi.org/10.3892/ijmm.2020.4617
_version_ 1783548885037219840
author Zhang, Dan
Zhao, Xinyi
Zhang, Dingning
Gao, Siyang
Xue, Xindong
Fu, Jianhua
author_facet Zhang, Dan
Zhao, Xinyi
Zhang, Dingning
Gao, Siyang
Xue, Xindong
Fu, Jianhua
author_sort Zhang, Dan
collection PubMed
description Supplemental oxygen therapy can be life-saving for premature infants. Our previous study revealed a defect in the autophagic flux in the lung tissues of neonatal rats with hyperoxia-induced bronchopulmonary dysplasia (BPD), but the underlying mechanism remains unknown. Moreover, there are few innovative treatments that can completely alter the course of BPD. The present study examined the expression of Syntaxin 17 (STX17), a protein necessary for autophago-some-lysosome binding, in alveolar type II (AT-II) epithelial cells of neonatal rats with BPD. Neonatal Sprague-Dawley rats were randomly exposed to elevated O(2) levels [fraction of inspired oxygen (FiO(2)), 0.8; model group] or normal room air (FiO(2), 0.21; control group), and the expression levels of STX17, autophagy-related [Microtubule-associated protein 1A/1B-light chain 3B (LC3B)-II, p62, lysosomal-associated membrane protein 1)] and apoptosis-related (cleaved caspase3) mRNA and proteins were examined in lung tissues. Moreover, the expression levels of the aforementioned proteins were measured in isolated primary AT-II cells cultured in vitro under hyperoxic conditions in the presence or absence of pharmacological modulators of autophagy. Transmission electron microscopy identified that AT-II cell apoptosis and autophagosome aggregation were elevated in the lungs of BPD rats compared with control rats on postnatal day 7. STX17 mRNA and protein expression levels were decreased in lung tissue and isolated AT-II cells as early as postnatal day 3 in BPD rats, while the expression levels of LC3B-II, p62 and cleaved caspase3 were increased, reaching a peak on postnatal day 7. This early reduction in STX17 expression, followed by increased expression in autophagy- and apoptosis-related proteins, was also observed in isolated AT-II cells exposed to hyperoxia in vitro. However, treatment with the autophagy inducers rapamycin or LiCl eliminated the hyperoxia-induced reduction in STX17, partially restored the autophagy flux and increased the survival of AT-II cells exposed to hyperoxia. Collectively, these results indicated that STX17 expression in AT-II cells was reduced in the early stages of BPD in neonatal rats and may be related to the subsequent hyperoxia-induced block in autophagic flux.
format Online
Article
Text
id pubmed-7307846
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-73078462020-06-23 Hyperoxia reduces STX17 expression and inhibits the autophagic flux in alveolar type II epithelial cells in newborn rats Zhang, Dan Zhao, Xinyi Zhang, Dingning Gao, Siyang Xue, Xindong Fu, Jianhua Int J Mol Med Articles Supplemental oxygen therapy can be life-saving for premature infants. Our previous study revealed a defect in the autophagic flux in the lung tissues of neonatal rats with hyperoxia-induced bronchopulmonary dysplasia (BPD), but the underlying mechanism remains unknown. Moreover, there are few innovative treatments that can completely alter the course of BPD. The present study examined the expression of Syntaxin 17 (STX17), a protein necessary for autophago-some-lysosome binding, in alveolar type II (AT-II) epithelial cells of neonatal rats with BPD. Neonatal Sprague-Dawley rats were randomly exposed to elevated O(2) levels [fraction of inspired oxygen (FiO(2)), 0.8; model group] or normal room air (FiO(2), 0.21; control group), and the expression levels of STX17, autophagy-related [Microtubule-associated protein 1A/1B-light chain 3B (LC3B)-II, p62, lysosomal-associated membrane protein 1)] and apoptosis-related (cleaved caspase3) mRNA and proteins were examined in lung tissues. Moreover, the expression levels of the aforementioned proteins were measured in isolated primary AT-II cells cultured in vitro under hyperoxic conditions in the presence or absence of pharmacological modulators of autophagy. Transmission electron microscopy identified that AT-II cell apoptosis and autophagosome aggregation were elevated in the lungs of BPD rats compared with control rats on postnatal day 7. STX17 mRNA and protein expression levels were decreased in lung tissue and isolated AT-II cells as early as postnatal day 3 in BPD rats, while the expression levels of LC3B-II, p62 and cleaved caspase3 were increased, reaching a peak on postnatal day 7. This early reduction in STX17 expression, followed by increased expression in autophagy- and apoptosis-related proteins, was also observed in isolated AT-II cells exposed to hyperoxia in vitro. However, treatment with the autophagy inducers rapamycin or LiCl eliminated the hyperoxia-induced reduction in STX17, partially restored the autophagy flux and increased the survival of AT-II cells exposed to hyperoxia. Collectively, these results indicated that STX17 expression in AT-II cells was reduced in the early stages of BPD in neonatal rats and may be related to the subsequent hyperoxia-induced block in autophagic flux. D.A. Spandidos 2020-08 2020-05-27 /pmc/articles/PMC7307846/ /pubmed/32467992 http://dx.doi.org/10.3892/ijmm.2020.4617 Text en Copyright: © Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Zhang, Dan
Zhao, Xinyi
Zhang, Dingning
Gao, Siyang
Xue, Xindong
Fu, Jianhua
Hyperoxia reduces STX17 expression and inhibits the autophagic flux in alveolar type II epithelial cells in newborn rats
title Hyperoxia reduces STX17 expression and inhibits the autophagic flux in alveolar type II epithelial cells in newborn rats
title_full Hyperoxia reduces STX17 expression and inhibits the autophagic flux in alveolar type II epithelial cells in newborn rats
title_fullStr Hyperoxia reduces STX17 expression and inhibits the autophagic flux in alveolar type II epithelial cells in newborn rats
title_full_unstemmed Hyperoxia reduces STX17 expression and inhibits the autophagic flux in alveolar type II epithelial cells in newborn rats
title_short Hyperoxia reduces STX17 expression and inhibits the autophagic flux in alveolar type II epithelial cells in newborn rats
title_sort hyperoxia reduces stx17 expression and inhibits the autophagic flux in alveolar type ii epithelial cells in newborn rats
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307846/
https://www.ncbi.nlm.nih.gov/pubmed/32467992
http://dx.doi.org/10.3892/ijmm.2020.4617
work_keys_str_mv AT zhangdan hyperoxiareducesstx17expressionandinhibitstheautophagicfluxinalveolartypeiiepithelialcellsinnewbornrats
AT zhaoxinyi hyperoxiareducesstx17expressionandinhibitstheautophagicfluxinalveolartypeiiepithelialcellsinnewbornrats
AT zhangdingning hyperoxiareducesstx17expressionandinhibitstheautophagicfluxinalveolartypeiiepithelialcellsinnewbornrats
AT gaosiyang hyperoxiareducesstx17expressionandinhibitstheautophagicfluxinalveolartypeiiepithelialcellsinnewbornrats
AT xuexindong hyperoxiareducesstx17expressionandinhibitstheautophagicfluxinalveolartypeiiepithelialcellsinnewbornrats
AT fujianhua hyperoxiareducesstx17expressionandinhibitstheautophagicfluxinalveolartypeiiepithelialcellsinnewbornrats