Cargando…
Evaluation of a Machine Learning Model Based on Pretreatment Symptoms and Electroencephalographic Features to Predict Outcomes of Antidepressant Treatment in Adults With Depression: A Prespecified Secondary Analysis of a Randomized Clinical Trial
IMPORTANCE: Despite the high prevalence and potential outcomes of major depressive disorder, whether and how patients will respond to antidepressant medications is not easily predicted. OBJECTIVE: To identify the extent to which a machine learning approach, using gradient-boosted decision trees, can...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309440/ https://www.ncbi.nlm.nih.gov/pubmed/32568399 http://dx.doi.org/10.1001/jamanetworkopen.2020.6653 |