Cargando…
Evaluation of a Machine Learning Model Based on Pretreatment Symptoms and Electroencephalographic Features to Predict Outcomes of Antidepressant Treatment in Adults With Depression: A Prespecified Secondary Analysis of a Randomized Clinical Trial
IMPORTANCE: Despite the high prevalence and potential outcomes of major depressive disorder, whether and how patients will respond to antidepressant medications is not easily predicted. OBJECTIVE: To identify the extent to which a machine learning approach, using gradient-boosted decision trees, can...
Autores principales: | Rajpurkar, Pranav, Yang, Jingbo, Dass, Nathan, Vale, Vinjai, Keller, Arielle S., Irvin, Jeremy, Taylor, Zachary, Basu, Sanjay, Ng, Andrew, Williams, Leanne M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309440/ https://www.ncbi.nlm.nih.gov/pubmed/32568399 http://dx.doi.org/10.1001/jamanetworkopen.2020.6653 |
Ejemplares similares
-
Individual Deviations from Normative Electroencephalographic Connectivity Predict Antidepressant Response
por: Tong, Xiaoyu, et al.
Publicado: (2023) -
An electroencephalographic signature predicts antidepressant response in major depression
por: Wu, Wei, et al.
Publicado: (2020) -
Incorporating machine learning and social determinants of health indicators into prospective risk adjustment for health plan payments
por: Irvin, Jeremy A., et al.
Publicado: (2020) -
Electroencephalographic Seizure or Electroencephalographic Status Epilepticus in the ICU? Is it Time to Focus Just on Electroencephalographic Status Epilepticus?
por: Joshi, Charuta
Publicado: (2021) -
A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
por: Kaya, Murat, et al.
Publicado: (2018)