Cargando…

Machine learning insight into the role of imaging and clinical variables for the prediction of obstructive coronary artery disease and revascularization: An exploratory analysis of the CONSERVE study

BACKGROUND: Machine learning (ML) is able to extract patterns and develop algorithms to construct data-driven models. We use ML models to gain insight into the relative importance of variables to predict obstructive coronary artery disease (CAD) using the Coronary Computed Tomographic Angiography fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Baskaran, Lohendran, Ying, Xiaohan, Xu, Zhuoran, Al’Aref, Subhi J., Lee, Benjamin C., Lee, Sang-Eun, Danad, Ibrahim, Park, Hyung-Bok, Bathina, Ravi, Baggiano, Andrea, Beltrama, Virginia, Cerci, Rodrigo, Choi, Eui-Young, Choi, Jung-Hyun, Choi, So-Yeon, Cole, Jason, Doh, Joon-Hyung, Ha, Sang-Jin, Her, Ae-Young, Kepka, Cezary, Kim, Jang-Young, Kim, Jin-Won, Kim, Sang-Wook, Kim, Woong, Lu, Yao, Kumar, Amit, Heo, Ran, Lee, Ji Hyun, Sung, Ji-min, Valeti, Uma, Andreini, Daniele, Pontone, Gianluca, Han, Donghee, Villines, Todd C., Lin, Fay, Chang, Hyuk-Jae, Min, James K., Shaw, Leslee J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316297/
https://www.ncbi.nlm.nih.gov/pubmed/32584909
http://dx.doi.org/10.1371/journal.pone.0233791