Cargando…
Prediction of disulfide bond engineering sites using a machine learning method
Disulfide bonds are covalently bonded sulfur atoms from cysteine pairs in protein structures. Due to the importance of disulfide bonds in protein folding and structural stability, artificial disulfide bonds are often engineered by cysteine mutation to enhance protein structural stability. To facilit...
Autores principales: | Gao, Xiang, Dong, Xiaoqun, Li, Xuanxuan, Liu, Zhijie, Liu, Haiguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316719/ https://www.ncbi.nlm.nih.gov/pubmed/32587353 http://dx.doi.org/10.1038/s41598-020-67230-z |
Ejemplares similares
-
Author Correction: Prediction of disulfide bond engineering sites using a machine learning method
por: Gao, Xiang, et al.
Publicado: (2020) -
Protein crystal quality oriented disulfide bond engineering
por: Pu, Mengchen, et al.
Publicado: (2017) -
Rational Design of a Thermostable 2′-Deoxyribosyltransferase for Nelarabine Production by Prediction of Disulfide Bond Engineering Sites
por: Cruz, Guillermo, et al.
Publicado: (2022) -
Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations
por: Savojardo, Castrense, et al.
Publicado: (2013) -
The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase
por: Siadat, Omid Ranaei, et al.
Publicado: (2006)