Cargando…

Iron stored in ferritin is chemically reduced in the presence of aggregating Aβ(1-42)

Atypical low-oxidation-state iron phases in Alzheimer’s disease (AD) pathology are implicated in disease pathogenesis, as they may promote elevated redox activity and convey toxicity. However, the origin of low-oxidation-state iron and the pathways responsible for its formation and evolution remain...

Descripción completa

Detalles Bibliográficos
Autores principales: Everett, James, Brooks, Jake, Lermyte, Frederik, O’Connor, Peter B., Sadler, Peter J., Dobson, Jon, Collingwood, Joanna F., Telling, Neil D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316746/
https://www.ncbi.nlm.nih.gov/pubmed/32587293
http://dx.doi.org/10.1038/s41598-020-67117-z
Descripción
Sumario:Atypical low-oxidation-state iron phases in Alzheimer’s disease (AD) pathology are implicated in disease pathogenesis, as they may promote elevated redox activity and convey toxicity. However, the origin of low-oxidation-state iron and the pathways responsible for its formation and evolution remain unresolved. Here we investigate the interaction of the AD peptide β-amyloid (Aβ) with the iron storage protein ferritin, to establish whether interactions between these two species are a potential source of low-oxidation-state iron in AD. Using X-ray spectromicroscopy and electron microscopy we found that the co-aggregation of Aβ and ferritin resulted in the conversion of ferritin’s inert ferric core into more reactive low-oxidation-states. Such findings strongly implicate Aβ in the altered iron handling and increased oxidative stress observed in AD pathogenesis. These amyloid-associated iron phases have biomarker potential to assist with disease diagnosis and staging, and may act as targets for therapies designed to lower oxidative stress in AD tissue.