Cargando…
Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks
Shallow feed-forward networks are incapable of addressing complex tasks such as natural language processing that require learning of temporal signals. To address these requirements, we need deep neuromorphic architectures with recurrent connections such as deep recurrent neural networks. However, th...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316775/ https://www.ncbi.nlm.nih.gov/pubmed/32587241 http://dx.doi.org/10.1038/s41467-020-16985-0 |