Cargando…
Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity
Over the last few years more and more organ and idiosyncratic toxicities were linked to mitochondrial toxicity. Despite well‐established assays, such as the seahorse and Glucose/Galactose assay, an in silico approach to mitochondrial toxicity is still feasible, particularly when it comes to the asse...
Autores principales: | Hemmerich, Jennifer, Troger, Florentina, Füzi, Barbara, F.Ecker, Gerhard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317375/ https://www.ncbi.nlm.nih.gov/pubmed/32108997 http://dx.doi.org/10.1002/minf.202000005 |
Ejemplares similares
-
In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
por: Yang, Hongbin, et al.
Publicado: (2018) -
Corrigendum: In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
por: Yang, Hongbin, et al.
Publicado: (2018) -
In silico toxicology: From structure–activity relationships towards deep learning and adverse outcome pathways
por: Hemmerich, Jennifer, et al.
Publicado: (2020) -
Path4Drug: Data Science Workflow for Identification of Tissue-Specific Biological Pathways Modulated by Toxic Drugs
por: Füzi, Barbara, et al.
Publicado: (2021) -
The use of structural alerts to avoid the toxicity of pharmaceuticals
por: Limban, Carmen, et al.
Publicado: (2018)