Cargando…
Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)‐initiated nonhomologous end joining (NHEJ) in cortical neurons
AIMS: Accumulating studies have suggested that base excision repair (BER) is the major repair pathway of oxidative DNA damage in neurons, and neurons are deficient in other DNA repair pathways, including nucleotide excision repair and homologous recombination repair. However, some studies have demon...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317839/ https://www.ncbi.nlm.nih.gov/pubmed/31628877 http://dx.doi.org/10.1111/nan.12584 |
_version_ | 1783550718647468032 |
---|---|
author | Yang, J.‐L. Chen, W.‐Y. Mukda, S. Yang, Y.‐R. Sun, S.‐F. Chen, S.‐D. |
author_facet | Yang, J.‐L. Chen, W.‐Y. Mukda, S. Yang, Y.‐R. Sun, S.‐F. Chen, S.‐D. |
author_sort | Yang, J.‐L. |
collection | PubMed |
description | AIMS: Accumulating studies have suggested that base excision repair (BER) is the major repair pathway of oxidative DNA damage in neurons, and neurons are deficient in other DNA repair pathways, including nucleotide excision repair and homologous recombination repair. However, some studies have demonstrated that neurons could efficiently repair glutamate‐ and menadione‐induced double‐strand breaks (DSBs), suggesting that the DSB repair mechanisms might be implicated in neuronal health. In this study, we hypothesized that BER and nonhomologous end joining (NHEJ) work together to repair oxidative DNA damage in neurons. METHODS: Immunohistochemistry and confocal microscopy were employed to examine the colocalization of apyrimidinic endonuclease 1 (APE1), histone variant 2AX (γH2AX) and phosphorylated p53‐binding protein (53BP1). APE1 inhibitor and shRNA were respectively applied to suppress APE1 activity and protein expression to determine the correlation of APE1 and DSB formation. The neutral comet assay was used to determine and quantitate the formation of DSB. RESULTS: Both γH2AX and 53BP1 were upregulated and colocalized with APE1 in the nuclei of rat cortical neurons subjected to menadione‐induced oxidative insults. Phospho53BP1 foci were efficiently abolished, but γH2AX foci persisted following the suppression of APE1 activity. Comet assays demonstrated that the inhibition of APE1 decreased the DSB formation. CONCLUSIONS: Our results indicate that APE1 can engage the NHEJ mechanism in the repair of oxidative DNA damage in neurons. These findings provide insights into the mechanisms underlying the efficient repair of oxidative DNA damage in neurons despite the high oxidative burden. |
format | Online Article Text |
id | pubmed-7317839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73178392020-06-29 Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)‐initiated nonhomologous end joining (NHEJ) in cortical neurons Yang, J.‐L. Chen, W.‐Y. Mukda, S. Yang, Y.‐R. Sun, S.‐F. Chen, S.‐D. Neuropathol Appl Neurobiol Original Articles AIMS: Accumulating studies have suggested that base excision repair (BER) is the major repair pathway of oxidative DNA damage in neurons, and neurons are deficient in other DNA repair pathways, including nucleotide excision repair and homologous recombination repair. However, some studies have demonstrated that neurons could efficiently repair glutamate‐ and menadione‐induced double‐strand breaks (DSBs), suggesting that the DSB repair mechanisms might be implicated in neuronal health. In this study, we hypothesized that BER and nonhomologous end joining (NHEJ) work together to repair oxidative DNA damage in neurons. METHODS: Immunohistochemistry and confocal microscopy were employed to examine the colocalization of apyrimidinic endonuclease 1 (APE1), histone variant 2AX (γH2AX) and phosphorylated p53‐binding protein (53BP1). APE1 inhibitor and shRNA were respectively applied to suppress APE1 activity and protein expression to determine the correlation of APE1 and DSB formation. The neutral comet assay was used to determine and quantitate the formation of DSB. RESULTS: Both γH2AX and 53BP1 were upregulated and colocalized with APE1 in the nuclei of rat cortical neurons subjected to menadione‐induced oxidative insults. Phospho53BP1 foci were efficiently abolished, but γH2AX foci persisted following the suppression of APE1 activity. Comet assays demonstrated that the inhibition of APE1 decreased the DSB formation. CONCLUSIONS: Our results indicate that APE1 can engage the NHEJ mechanism in the repair of oxidative DNA damage in neurons. These findings provide insights into the mechanisms underlying the efficient repair of oxidative DNA damage in neurons despite the high oxidative burden. John Wiley and Sons Inc. 2019-11-06 2020-06 /pmc/articles/PMC7317839/ /pubmed/31628877 http://dx.doi.org/10.1111/nan.12584 Text en © 2019 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Articles Yang, J.‐L. Chen, W.‐Y. Mukda, S. Yang, Y.‐R. Sun, S.‐F. Chen, S.‐D. Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)‐initiated nonhomologous end joining (NHEJ) in cortical neurons |
title | Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)‐initiated nonhomologous end joining (NHEJ) in cortical neurons |
title_full | Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)‐initiated nonhomologous end joining (NHEJ) in cortical neurons |
title_fullStr | Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)‐initiated nonhomologous end joining (NHEJ) in cortical neurons |
title_full_unstemmed | Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)‐initiated nonhomologous end joining (NHEJ) in cortical neurons |
title_short | Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)‐initiated nonhomologous end joining (NHEJ) in cortical neurons |
title_sort | oxidative dna damage is concurrently repaired by base excision repair (ber) and apyrimidinic endonuclease 1 (ape1)‐initiated nonhomologous end joining (nhej) in cortical neurons |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317839/ https://www.ncbi.nlm.nih.gov/pubmed/31628877 http://dx.doi.org/10.1111/nan.12584 |
work_keys_str_mv | AT yangjl oxidativednadamageisconcurrentlyrepairedbybaseexcisionrepairberandapyrimidinicendonuclease1ape1initiatednonhomologousendjoiningnhejincorticalneurons AT chenwy oxidativednadamageisconcurrentlyrepairedbybaseexcisionrepairberandapyrimidinicendonuclease1ape1initiatednonhomologousendjoiningnhejincorticalneurons AT mukdas oxidativednadamageisconcurrentlyrepairedbybaseexcisionrepairberandapyrimidinicendonuclease1ape1initiatednonhomologousendjoiningnhejincorticalneurons AT yangyr oxidativednadamageisconcurrentlyrepairedbybaseexcisionrepairberandapyrimidinicendonuclease1ape1initiatednonhomologousendjoiningnhejincorticalneurons AT sunsf oxidativednadamageisconcurrentlyrepairedbybaseexcisionrepairberandapyrimidinicendonuclease1ape1initiatednonhomologousendjoiningnhejincorticalneurons AT chensd oxidativednadamageisconcurrentlyrepairedbybaseexcisionrepairberandapyrimidinicendonuclease1ape1initiatednonhomologousendjoiningnhejincorticalneurons |