Cargando…
Infrared photovoltaic detector based on p-GeTe/n-Si heterojunction
GeTe is an important narrow bandgap semiconductor material and has found application in the fields of phase change storage as well as spintronics devices. However, it has not been studied for application in the field of infrared photovoltaic detectors working at room temperature. Herein, GeTe nanofi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324452/ https://www.ncbi.nlm.nih.gov/pubmed/32601898 http://dx.doi.org/10.1186/s11671-020-03336-7 |
Sumario: | GeTe is an important narrow bandgap semiconductor material and has found application in the fields of phase change storage as well as spintronics devices. However, it has not been studied for application in the field of infrared photovoltaic detectors working at room temperature. Herein, GeTe nanofilms were grown by magnetron sputtering technique and characterized to investigate its physical, electrical, and optical properties. A high-performance infrared photovoltaic detector based on GeTe/Si heterojunction with the detectivity of 8 × 10(11) Jones at 850 nm light irradiation at room temperature was demonstrated. |
---|