Cargando…
Fibroblast-Derived STC-1 Modulates Tumor-Associated Macrophages and Lung Adenocarcinoma Development
The tumor microenvironment (TME) consists of different cell types, including tumor-associated macrophages (TAMs) and tumor-associated fibroblasts (TAFs). How these cells interact and contribute to lung carcinogenesis remains elusive. Using (G12D)KRAS- and (V600E)BRAF-driven mouse lung models, we ide...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326292/ https://www.ncbi.nlm.nih.gov/pubmed/32579928 http://dx.doi.org/10.1016/j.celrep.2020.107802 |
Sumario: | The tumor microenvironment (TME) consists of different cell types, including tumor-associated macrophages (TAMs) and tumor-associated fibroblasts (TAFs). How these cells interact and contribute to lung carcinogenesis remains elusive. Using (G12D)KRAS- and (V600E)BRAF-driven mouse lung models, we identify the pleiotropic glycoprotein stanniocalcin-1 (STC1) as a regulator of TAM-TAF interactions. STC1 is secreted by TAFs and suppresses TAM differentiation, at least in part, by sequestering the binding of GRP94, an autocrine macrophage-differentiation-inducing factor, to its cognate scavenger receptors. The accumulation of mature TAMs in the Stc1-deficient lung leads to enhanced secretion of TGF-β1 and, thus, TAF accumulation in the TME. Consistent with the mouse data, in human lung adenocarcinoma, STC1 expression is restricted to myofibroblasts, and a significant increase of naive macrophages is detected in STC1-high compared with STC1-low cases. This work increases our understanding of lung adenocarcinoma development and suggests new approaches for therapeutic targeting of the TME. |
---|