Cargando…
Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models
BACKGROUND: The standard lasso penalty and its extensions are commonly used to develop a regularized regression model while selecting candidate predictor variables on a time-to-event outcome in high-dimensional data. However, these selection methods focus on a homogeneous set of variables and do not...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331150/ https://www.ncbi.nlm.nih.gov/pubmed/32615919 http://dx.doi.org/10.1186/s12859-020-03618-y |