Cargando…
Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models
BACKGROUND: The standard lasso penalty and its extensions are commonly used to develop a regularized regression model while selecting candidate predictor variables on a time-to-event outcome in high-dimensional data. However, these selection methods focus on a homogeneous set of variables and do not...
Autores principales: | Belhechmi, Shaima, Bin, Riccardo De, Rotolo, Federico, Michiels, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331150/ https://www.ncbi.nlm.nih.gov/pubmed/32615919 http://dx.doi.org/10.1186/s12859-020-03618-y |
Ejemplares similares
-
Favoring the hierarchical constraint in penalized survival models for randomized trials in precision medicine
por: Belhechmi, Shaima, et al.
Publicado: (2023) -
An alternative trial-level measure for evaluating failure-time surrogate endpoints based on prediction error
por: Belhechmi, Shaima, et al.
Publicado: (2019) -
Penalized Ordinal Regression Methods for Predicting Stage of Cancer in High-Dimensional Covariate Spaces
por: Gentry, Amanda Elswick, et al.
Publicado: (2015) -
Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials
por: Ternès, Nils, et al.
Publicado: (2017) -
Prediction of treatment benefit in high-dimensional cox models via gene signatures in randomized clinical trials
por: Ternès, Nils, et al.
Publicado: (2015)