Cargando…

Genome-wide mapping and allelic fingerprinting provide insights into the genetics of resistance to wheat stripe rust in India, Kenya and Mexico

Stripe or yellow rust (YR) caused by Puccinia striiformis Westend. f. sp. tritici Erikss. is a persistent biotic-stress threatening global wheat production. To broaden our understanding of the shared genetic basis of YR resistance across multi-site and multi-year evaluations, we performed a large ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Juliana, Philomin, Singh, Ravi Prakash, Huerta-Espino, Julio, Bhavani, Sridhar, Randhawa, Mandeep S., Kumar, Uttam, Joshi, Arun Kumar, Bhati, Pradeep Kumar, Mir, Hector Eduardo Villasenor, Mishra, Chandra Nath, Singh, Gyanendra Pratap
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331708/
https://www.ncbi.nlm.nih.gov/pubmed/32616836
http://dx.doi.org/10.1038/s41598-020-67874-x
Descripción
Sumario:Stripe or yellow rust (YR) caused by Puccinia striiformis Westend. f. sp. tritici Erikss. is a persistent biotic-stress threatening global wheat production. To broaden our understanding of the shared genetic basis of YR resistance across multi-site and multi-year evaluations, we performed a large genome-wide association study using 43,706 YR observations on 23,346 wheat lines from the International Maize and Wheat Improvement Center evaluated between 2013 and 2019 at sites in India, Kenya and Mexico, against predominant races prevalent in the countries. We identified 114 repeatable markers tagging 20 quantitative trait loci (QTL) associated with YR on ten chromosomes including 1D, 2A, 2B, 2D, 3A, 4A, 4D, 5A, 5B and 6B, among which four QTL, QYr.cim-2DL.2, QYr.cim-2AS.1, QYr.cim-2BS.2 and QYr.cim-2BS.3 were significant in more than ten datasets. Furthermore, we report YR-associated allelic fingerprints for the largest panel of wheat breeding lines (52,067 lines) till date, creating substantial opportunities for YR favorable allele enrichment using molecular markers. Overall, the markers and fingerprints reported in this study provide excellent insights into the genetic architecture of YR resistance in different geographical regions, time-periods and wheat germplasm and are a huge resource to the global wheat breeding community for accelerating YR resistance breeding efforts.