Cargando…
Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network
Millions of somatic mutations have recently been discovered in cancer genomes. These mutations in cancer genomes occur due to internal and external mutagenesis forces. Decoding the mutational processes by examining their unique patterns has successfully revealed many known and novel signatures from...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334101/ https://www.ncbi.nlm.nih.gov/pubmed/32528130 http://dx.doi.org/10.1038/s41388-020-1343-z |
_version_ | 1783553864889270272 |
---|---|
author | Pei, Guangsheng Hu, Ruifeng Dai, Yulin Zhao, Zhongming Jia, Peilin |
author_facet | Pei, Guangsheng Hu, Ruifeng Dai, Yulin Zhao, Zhongming Jia, Peilin |
author_sort | Pei, Guangsheng |
collection | PubMed |
description | Millions of somatic mutations have recently been discovered in cancer genomes. These mutations in cancer genomes occur due to internal and external mutagenesis forces. Decoding the mutational processes by examining their unique patterns has successfully revealed many known and novel signatures from whole exome data, but many still remain undiscovered. Here, we developed a deep learning approach, DeepMS, to decompose mutational signatures using 52,671,908 somatic mutations from 2780 highly curated cancer genomes with whole genome sequencing (WGS) in 37 cancer types/subtypes. With rigorous model training and comparison, we characterized 54 signatures for single base substitutions (SBSs), 11 for doublet base substitutions (DBSs) and 16 for small insertions and deletions (Indels). Compared to the previous methods, DeepMS could discover 37 SBS, 5 DBS and 9 Indel new signatures, many of which represent associations with DNA mismatch or base excision repair and cisplatin therapy mechanisms. We further developed a regression-based model to estimate the correlation between signatures and clinical and demographical phenotypes. The first deep learning model DeepMS on WGS somatic mutational profiles enable us identify more comprehensive context-based mutational signatures than traditional NMF approaches. Our work substantially expands the landscape of the naturally occurring mutational signatures in cancer genomes, and provides new insights into cancer biology. |
format | Online Article Text |
id | pubmed-7334101 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-73341012020-12-11 Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network Pei, Guangsheng Hu, Ruifeng Dai, Yulin Zhao, Zhongming Jia, Peilin Oncogene Article Millions of somatic mutations have recently been discovered in cancer genomes. These mutations in cancer genomes occur due to internal and external mutagenesis forces. Decoding the mutational processes by examining their unique patterns has successfully revealed many known and novel signatures from whole exome data, but many still remain undiscovered. Here, we developed a deep learning approach, DeepMS, to decompose mutational signatures using 52,671,908 somatic mutations from 2780 highly curated cancer genomes with whole genome sequencing (WGS) in 37 cancer types/subtypes. With rigorous model training and comparison, we characterized 54 signatures for single base substitutions (SBSs), 11 for doublet base substitutions (DBSs) and 16 for small insertions and deletions (Indels). Compared to the previous methods, DeepMS could discover 37 SBS, 5 DBS and 9 Indel new signatures, many of which represent associations with DNA mismatch or base excision repair and cisplatin therapy mechanisms. We further developed a regression-based model to estimate the correlation between signatures and clinical and demographical phenotypes. The first deep learning model DeepMS on WGS somatic mutational profiles enable us identify more comprehensive context-based mutational signatures than traditional NMF approaches. Our work substantially expands the landscape of the naturally occurring mutational signatures in cancer genomes, and provides new insights into cancer biology. 2020-06-11 2020-07 /pmc/articles/PMC7334101/ /pubmed/32528130 http://dx.doi.org/10.1038/s41388-020-1343-z Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Pei, Guangsheng Hu, Ruifeng Dai, Yulin Zhao, Zhongming Jia, Peilin Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network |
title | Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network |
title_full | Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network |
title_fullStr | Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network |
title_full_unstemmed | Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network |
title_short | Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network |
title_sort | decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334101/ https://www.ncbi.nlm.nih.gov/pubmed/32528130 http://dx.doi.org/10.1038/s41388-020-1343-z |
work_keys_str_mv | AT peiguangsheng decodingwholegenomemutationalsignaturesin37humanpancancersbydenoisingsparseautoencoderneuralnetwork AT huruifeng decodingwholegenomemutationalsignaturesin37humanpancancersbydenoisingsparseautoencoderneuralnetwork AT daiyulin decodingwholegenomemutationalsignaturesin37humanpancancersbydenoisingsparseautoencoderneuralnetwork AT zhaozhongming decodingwholegenomemutationalsignaturesin37humanpancancersbydenoisingsparseautoencoderneuralnetwork AT jiapeilin decodingwholegenomemutationalsignaturesin37humanpancancersbydenoisingsparseautoencoderneuralnetwork |