Cargando…
Considerably Improving Clustering Algorithms Using UMAP Dimensionality Reduction Technique: A Comparative Study
Dimensionality reduction is widely used in machine learning and big data analytics since it helps to analyze and to visualize large, high-dimensional datasets. In particular, it can considerably help to perform tasks like data clustering and classification. Recently, embedding methods have emerged a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340901/ http://dx.doi.org/10.1007/978-3-030-51935-3_34 |