Cargando…
Considerably Improving Clustering Algorithms Using UMAP Dimensionality Reduction Technique: A Comparative Study
Dimensionality reduction is widely used in machine learning and big data analytics since it helps to analyze and to visualize large, high-dimensional datasets. In particular, it can considerably help to perform tasks like data clustering and classification. Recently, embedding methods have emerged a...
Autores principales: | Allaoui, Mebarka, Kherfi, Mohammed Lamine, Cheriet, Abdelhakim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340901/ http://dx.doi.org/10.1007/978-3-030-51935-3_34 |
Ejemplares similares
-
Object Detector Combination for Increasing Accuracy and Detecting More Overlapping Objects
por: Drid, Khaoula, et al.
Publicado: (2020) -
Dimensionality reduction by UMAP to visualize physical and genetic interactions
por: Dorrity, Michael W., et al.
Publicado: (2020) -
Dimensionality reduction by UMAP for visualizing and aiding in classification of imaging flow cytometry data
por: Stolarek, Ireneusz, et al.
Publicado: (2022) -
Fuzzy Information Discrimination Measures and Their Application to Low Dimensional Embedding Construction in the UMAP Algorithm
por: Demidova, Liliya A., et al.
Publicado: (2022) -
BRAQUE: Bayesian Reduction for Amplified Quantization in UMAP Embedding
por: Dall’Olio, Lorenzo, et al.
Publicado: (2023)