Cargando…
A Random Forest-Cellular Automata Modeling Approach to Predict Future Forest Cover Change in Middle Atlas Morocco, Under Anthropic, Biotic and Abiotic Parameters
This study aims to predict forest species cover changes in the Sidi M’Guild Forest (Mid Atlas, Morocco). Used approach combines remote sensing and GIS and is based on training Cellular Automata and Random Forest (RF) regression model for predicting species cover transition. Five covariates that prec...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340914/ http://dx.doi.org/10.1007/978-3-030-51935-3_10 |