Cargando…

Humanized GPRC6A(KGKY) is a gain-of-function polymorphism in mice

GPRC6A is proposed to regulate energy metabolism in mice, but in humans a KGKY polymorphism in the third intracellular loop (ICL3) is proposed to result in intracellular retention and loss-of-function. To test physiological importance of this human polymorphism in vivo, we performed targeted genomic...

Descripción completa

Detalles Bibliográficos
Autores principales: Pi, Min, Xu, Fuyi, Ye, Ruisong, Nishimoto, Satoru K., Kesterson, Robert A., Williams, Robert W., Lu, Lu, Quarles, L. Darryl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341878/
https://www.ncbi.nlm.nih.gov/pubmed/32636482
http://dx.doi.org/10.1038/s41598-020-68113-z
Descripción
Sumario:GPRC6A is proposed to regulate energy metabolism in mice, but in humans a KGKY polymorphism in the third intracellular loop (ICL3) is proposed to result in intracellular retention and loss-of-function. To test physiological importance of this human polymorphism in vivo, we performed targeted genomic humanization of mice by using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9) system to replace the RKLP sequence in the ICL3 of the GPRC6A mouse gene with the uniquely human KGKY sequence to create Gprc6a-(KGKY-knockin) mice. Knock-in of a human KGKY sequence resulted in a reduction in basal blood glucose levels and increased circulating serum insulin and FGF-21 concentrations. Gprc6a-(KGKY-knockin) mice demonstrated improved glucose tolerance, despite impaired insulin sensitivity and enhanced pyruvate-mediated gluconeogenesis. Liver transcriptome analysis of Gprc6a-(KGKY-knockin) mice identified alterations in glucose, glycogen and fat metabolism pathways. Thus, the uniquely human GPRC6A-(KGKY) variant appears to be a gain-of-function polymorphism that positively regulates energy metabolism in mice.