Cargando…
Development of a High-Density Piezoelectric Micromachined Ultrasonic Transducer Array Based on Patterned Aluminum Nitride Thin Film
This study presents the fabrication and characterization of a piezoelectric micromachined ultrasonic transducer (pMUT; radius: 40 µm) using a patterned aluminum nitride (AlN) thin film as the active piezoelectric material. A 20 × 20 array of pMUTs using a 1 µm thick AlN thin film was designed and fa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345422/ https://www.ncbi.nlm.nih.gov/pubmed/32604827 http://dx.doi.org/10.3390/mi11060623 |
Sumario: | This study presents the fabrication and characterization of a piezoelectric micromachined ultrasonic transducer (pMUT; radius: 40 µm) using a patterned aluminum nitride (AlN) thin film as the active piezoelectric material. A 20 × 20 array of pMUTs using a 1 µm thick AlN thin film was designed and fabricated on a 2 × 2 mm(2) footprint for a high fill factor. Based on the electrical impedance and phase of the pMUT array, the electromechanical coefficient was ~1.7% at the average resonant frequency of 2.82 MHz in air. Dynamic displacement of the pMUT surface was characterized by scanning laser Doppler vibrometry. The pressure output while immersed in water was 19.79 kPa when calculated based on the peak displacement at the resonant frequency. The proposed AlN pMUT array has potential applications in biomedical sensing for healthcare, medical imaging, and biometrics. |
---|