Cargando…
Hypoxia-preconditioned olfactory mucosa mesenchymal stem cells abolish cerebral ischemia/reperfusion-induced pyroptosis and apoptotic death of microglial cells by activating HIF-1α
Microglial cells are the first line immune cells that initiate inflammatory responses following cerebral ischemia/reperfusion(I/R) injury. Microglial cells are also associated with a novel subtype of pro-inflammatory programmed cell death known as pyroptosis. Research has been directed at developing...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346036/ https://www.ncbi.nlm.nih.gov/pubmed/32507769 http://dx.doi.org/10.18632/aging.103307 |
Sumario: | Microglial cells are the first line immune cells that initiate inflammatory responses following cerebral ischemia/reperfusion(I/R) injury. Microglial cells are also associated with a novel subtype of pro-inflammatory programmed cell death known as pyroptosis. Research has been directed at developing treatments that modulate inflammatory responses and protect against cell death caused by cerebral I/R. Key among such treatments include mesenchymal stem cell (MSC) therapy. A unique type of MSC termed olfactory mucosa mesenchymal stem cell (OM-MSC) confers neuroprotection by promoting the secretion of paracrine factors, and neuroprotection. This study investigated whether hypoxic OM-MSCs could inhibit microglial cell death upon I/R insult in vitro. A traditional oxygen-glucose deprivation/reperfusion (OGD/R) model, analogous to I/R, was established. Results showed that OGD/R induced apoptosis and pyroptosis in microglial cells while hypoxia in OM-MSCs significantly attenuated these effects. Moreover, the effects of OM-MSCs were mediated by Hypoxia-inducible factor 1-alpha (HIF-1α). Taken together, these findings reveal that hypoxia-preconditioned OM-MSC inhibits pyroptotic and apoptotic death of microglial cell in response to cerebral ischemia/reperfusion insult by activating HIF-1α in vitro. |
---|