Cargando…
Establishment and validation of highly accurate formalin-fixed paraffin-embedded quantitative proteomics by heat-compatible pressure cycling technology using phase-transfer surfactant and SWATH-MS
The purpose of this study was to establish a quantitative proteomic method able to accurately quantify pathological changes in the protein expression levels of not only non-membrane proteins, but also membrane proteins, using formalin-fixed paraffin-embedded (FFPE) samples. Protein extraction from F...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347883/ https://www.ncbi.nlm.nih.gov/pubmed/32647189 http://dx.doi.org/10.1038/s41598-020-68245-2 |
Sumario: | The purpose of this study was to establish a quantitative proteomic method able to accurately quantify pathological changes in the protein expression levels of not only non-membrane proteins, but also membrane proteins, using formalin-fixed paraffin-embedded (FFPE) samples. Protein extraction from FFPE sections of mouse liver was increased 3.33-fold by pressure cycling technology (PCT) and reached the same level as protein extraction from frozen sections. After PCT-assisted processing of FFPE liver samples followed by SWATH-MS-based comprehensive quantification, the peak areas of 88.4% of peptides agreed with those from matched fresh samples within a 1.5-fold range. For membrane proteins, this percentage was remarkably increased from 49.1 to 93.8% by PCT. Compared to the conventional method using urea buffer, the present method using phase-transfer surfactant (PTS) buffer at 95 °C showed better agreement of peptide peak areas between FFPE and fresh samples. When our method using PCT and PTS buffer at 95 °C was applied to a bile duct ligation (BDL) disease model, the BDL/control expression ratios for 80.0% of peptides agreed within a 1.2-fold range between FFPE and fresh samples. This heat-compatible FFPE-PCT-SWATH proteomics technology using PTS is suitable for quantitative studies of pathological molecular mechanisms and biomarker discovery utilizing widely available FFPE samples. |
---|