Cargando…
Deep Learning Method on Target Echo Signal Recognition for Obscurant Penetrating Lidar Detection in Degraded Visual Environments
With the rapid development of autonomous vehicles and mobile robotics, the desire to advance robust light detection and ranging (Lidar) detection methods for real world applications is increasing. However, this task still suffers in degraded visual environments (DVE), including smoke, dust, fog, and...
Autores principales: | Liang, Xujia, Huang, Zhonghua, Lu, Liping, Tao, Zhigang, Yang, Bing, Li, Yinlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349105/ https://www.ncbi.nlm.nih.gov/pubmed/32560504 http://dx.doi.org/10.3390/s20123424 |
Ejemplares similares
-
LiDAR Point Cloud Recognition and Visualization with Deep Learning for Overhead Contact Inspection
por: Tu, Xiaohan, et al.
Publicado: (2020) -
Deep Learning-Aided Inertial/Visual/LiDAR Integration for GNSS-Challenging Environments
por: Abdelaziz, Nader, et al.
Publicado: (2023) -
LiDAR Echo Gaussian Decomposition Algorithm for FPGA Implementation
por: Zhou, Guoqing, et al.
Publicado: (2022) -
LiDAR Point Cloud Recognition of Overhead Catenary System with Deep Learning
por: Lin, Shuai, et al.
Publicado: (2020) -
Penetrating chest trauma: the role of emergency echo
por: Guarracino, F, et al.
Publicado: (2010)