Cargando…
Inhibition of ATM Increases the Radiosensitivity of Uveal Melanoma Cells to Photons and Protons
Treatment of uveal melanoma (UM) is generally successful, with local primary tumour control being at 90–95%. Localized radiotherapy in the form of plaque brachytherapy or proton beam radiotherapy is the most common treatment modality in the UK. However, the basic mechanisms of radiation response, DN...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352388/ https://www.ncbi.nlm.nih.gov/pubmed/32481544 http://dx.doi.org/10.3390/cancers12061388 |
_version_ | 1783557626380943360 |
---|---|
author | Hussain, Rumana N. Coupland, Sarah E. Khzouz, Jakub Kalirai, Helen Parsons, Jason L. |
author_facet | Hussain, Rumana N. Coupland, Sarah E. Khzouz, Jakub Kalirai, Helen Parsons, Jason L. |
author_sort | Hussain, Rumana N. |
collection | PubMed |
description | Treatment of uveal melanoma (UM) is generally successful, with local primary tumour control being at 90–95%. Localized radiotherapy in the form of plaque brachytherapy or proton beam radiotherapy is the most common treatment modality in the UK. However, the basic mechanisms of radiation response, DNA repair and tissue reactions in UM have not been well documented previously. We have investigated the comparative radiosensitivity of four UM cell lines in response to exogenous radiation sources (both X-rays and protons), and correlated this with DNA repair protein expression and repair efficiency. We observed a broad range of radiosensitivity of different UM cell lines to X-rays and protons, with increased radioresistance correlating with elevated protein expression of ataxia telangiectasia mutated (ATM), a protein kinase involved in the signaling and repair of DNA double strand breaks. The use of an ATM inhibitor in UM cell lines enhanced radiosensitivity following both X-ray and proton irradiation, particularly in cells that contained high levels of ATM protein which are otherwise comparatively radioresistant. In proton-irradiated compared with non-irradiated primary enucleated UM patient samples, there was no significant difference in ATM protein expression. Our study therefore suggests that ATM is a potential target for increasing the radiosensitivity of more resistant UM subgroups. |
format | Online Article Text |
id | pubmed-7352388 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73523882020-07-15 Inhibition of ATM Increases the Radiosensitivity of Uveal Melanoma Cells to Photons and Protons Hussain, Rumana N. Coupland, Sarah E. Khzouz, Jakub Kalirai, Helen Parsons, Jason L. Cancers (Basel) Article Treatment of uveal melanoma (UM) is generally successful, with local primary tumour control being at 90–95%. Localized radiotherapy in the form of plaque brachytherapy or proton beam radiotherapy is the most common treatment modality in the UK. However, the basic mechanisms of radiation response, DNA repair and tissue reactions in UM have not been well documented previously. We have investigated the comparative radiosensitivity of four UM cell lines in response to exogenous radiation sources (both X-rays and protons), and correlated this with DNA repair protein expression and repair efficiency. We observed a broad range of radiosensitivity of different UM cell lines to X-rays and protons, with increased radioresistance correlating with elevated protein expression of ataxia telangiectasia mutated (ATM), a protein kinase involved in the signaling and repair of DNA double strand breaks. The use of an ATM inhibitor in UM cell lines enhanced radiosensitivity following both X-ray and proton irradiation, particularly in cells that contained high levels of ATM protein which are otherwise comparatively radioresistant. In proton-irradiated compared with non-irradiated primary enucleated UM patient samples, there was no significant difference in ATM protein expression. Our study therefore suggests that ATM is a potential target for increasing the radiosensitivity of more resistant UM subgroups. MDPI 2020-05-28 /pmc/articles/PMC7352388/ /pubmed/32481544 http://dx.doi.org/10.3390/cancers12061388 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hussain, Rumana N. Coupland, Sarah E. Khzouz, Jakub Kalirai, Helen Parsons, Jason L. Inhibition of ATM Increases the Radiosensitivity of Uveal Melanoma Cells to Photons and Protons |
title | Inhibition of ATM Increases the Radiosensitivity of Uveal Melanoma Cells to Photons and Protons |
title_full | Inhibition of ATM Increases the Radiosensitivity of Uveal Melanoma Cells to Photons and Protons |
title_fullStr | Inhibition of ATM Increases the Radiosensitivity of Uveal Melanoma Cells to Photons and Protons |
title_full_unstemmed | Inhibition of ATM Increases the Radiosensitivity of Uveal Melanoma Cells to Photons and Protons |
title_short | Inhibition of ATM Increases the Radiosensitivity of Uveal Melanoma Cells to Photons and Protons |
title_sort | inhibition of atm increases the radiosensitivity of uveal melanoma cells to photons and protons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352388/ https://www.ncbi.nlm.nih.gov/pubmed/32481544 http://dx.doi.org/10.3390/cancers12061388 |
work_keys_str_mv | AT hussainrumanan inhibitionofatmincreasestheradiosensitivityofuvealmelanomacellstophotonsandprotons AT couplandsarahe inhibitionofatmincreasestheradiosensitivityofuvealmelanomacellstophotonsandprotons AT khzouzjakub inhibitionofatmincreasestheradiosensitivityofuvealmelanomacellstophotonsandprotons AT kaliraihelen inhibitionofatmincreasestheradiosensitivityofuvealmelanomacellstophotonsandprotons AT parsonsjasonl inhibitionofatmincreasestheradiosensitivityofuvealmelanomacellstophotonsandprotons |