Cargando…
Identifying tumor clones in sparse single-cell mutation data
MOTIVATION: Recent single-cell DNA sequencing technologies enable whole-genome sequencing of hundreds to thousands of individual cells. However, these technologies have ultra-low sequencing coverage (<0.5× per cell) which has limited their use to the analysis of large copy-number aberrations (CNA...
Autores principales: | Myers, Matthew A, Zaccaria, Simone, Raphael, Benjamin J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355247/ https://www.ncbi.nlm.nih.gov/pubmed/32657385 http://dx.doi.org/10.1093/bioinformatics/btaa449 |
Ejemplares similares
-
Mutational signature learning with supervised negative binomial non-negative matrix factorization
por: Lyu, Xinrui, et al.
Publicado: (2020) -
ClonArch: visualizing the spatial clonal architecture of tumors
por: Wu, Jiaqi, et al.
Publicado: (2020) -
Combinatorial and statistical prediction of gene expression from haplotype sequence
por: Alpay, Berk A, et al.
Publicado: (2020) -
REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets
por: Marchet, Camille, et al.
Publicado: (2020) -
Distance indexing and seed clustering in sequence graphs
por: Chang, Xian, et al.
Publicado: (2020)