Cargando…
CRISPRL and: Interpretable large-scale inference of DNA repair landscape based on a spectral approach
SUMMARY: We propose a new spectral framework for reliable training, scalable inference and interpretable explanation of the DNA repair outcome following a Cas9 cutting. Our framework, dubbed CRISPRL and, relies on an unexploited observation about the nature of the repair process: the landscape of th...
Autores principales: | Aghazadeh, Amirali, Ocal, Orhan, Ramchandran, Kannan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355252/ https://www.ncbi.nlm.nih.gov/pubmed/32657417 http://dx.doi.org/10.1093/bioinformatics/btaa505 |
Ejemplares similares
-
Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions
por: Aghazadeh, Amirali, et al.
Publicado: (2021) -
Mocap: large-scale inference of transcription factor binding sites from chromatin accessibility
por: Chen, Xi, et al.
Publicado: (2017) -
Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery
por: Hoinka, Jan, et al.
Publicado: (2015) -
Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers
por: Tao, Yifeng, et al.
Publicado: (2022) -
Shape-based alignment of genomic landscapes in multi-scale resolution
por: Ashida, Hiroki, et al.
Publicado: (2012)