Cargando…
Hopper: a mathematically optimal algorithm for sketching biological data
MOTIVATION: Single-cell RNA-sequencing has grown massively in scale since its inception, presenting substantial analytic and computational challenges. Even simple downstream analyses, such as dimensionality reduction and clustering, require days of runtime and hundreds of gigabytes of memory for tod...
Autores principales: | DeMeo, Benjamin, Berger, Bonnie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355272/ https://www.ncbi.nlm.nih.gov/pubmed/32657375 http://dx.doi.org/10.1093/bioinformatics/btaa408 |
Ejemplares similares
-
MS2Planner: improved fragmentation spectra coverage in untargeted mass spectrometry by iterative optimized data acquisition
por: Zuo, Zeyuan, et al.
Publicado: (2021) -
Finding the direct optimal RNA barrier energy and improving pathways with an arbitrary energy model
por: Takizawa, Hiroki, et al.
Publicado: (2020) -
On the feasibility of deep learning applications using raw mass spectrometry data
por: Cadow, Joris, et al.
Publicado: (2021) -
Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data
por: Huang, Daiyun, et al.
Publicado: (2021) -
Getting ‘ϕψχal’ with proteins: minimum message length inference of joint distributions of backbone and sidechain dihedral angles
por: Amarasinghe, Piyumi R, et al.
Publicado: (2023)