Cargando…
ganon: precise metagenomics classification against large and up-to-date sets of reference sequences
MOTIVATION: The exponential growth of assembled genome sequences greatly benefits metagenomics studies. However, currently available methods struggle to manage the increasing amount of sequences and their frequent updates. Indexing the current RefSeq can take days and hundreds of GB of memory on lar...
Autores principales: | Piro, Vitor C, Dadi, Temesgen H, Seiler, Enrico, Reinert, Knut, Renard, Bernhard Y |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355301/ https://www.ncbi.nlm.nih.gov/pubmed/32657362 http://dx.doi.org/10.1093/bioinformatics/btaa458 |
Ejemplares similares
-
Coriolis: enabling metagenomic classification on lightweight mobile devices
por: Mikalsen, Andrew J, et al.
Publicado: (2023) -
MetaBCC-LR: metagenomics binning by coverage and composition for long reads
por: Wickramarachchi, Anuradha, et al.
Publicado: (2020) -
Finding phylogeny-aware and biologically meaningful averages of metagenomic samples: L(2)UniFrac
por: Wei, Wei, et al.
Publicado: (2023) -
IDMIL: an alignment-free Interpretable Deep Multiple Instance Learning (MIL) for predicting disease from whole-metagenomic data
por: Rahman, Mohammad Arifur, et al.
Publicado: (2020) -
Bacteriophage classification for assembled contigs using graph convolutional network
por: Shang, Jiayu, et al.
Publicado: (2021)