Cargando…
Geometric potentials from deep learning improve prediction of CDR H3 loop structures
MOTIVATION: Antibody structure is largely conserved, except for a complementarity-determining region featuring six variable loops. Five of these loops adopt canonical folds which can typically be predicted with existing methods, while the remaining loop (CDR H3) remains a challenge due to its highly...
Autores principales: | Ruffolo, Jeffrey A, Guerra, Carlos, Mahajan, Sai Pooja, Sulam, Jeremias, Gray, Jeffrey J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355305/ https://www.ncbi.nlm.nih.gov/pubmed/32657412 http://dx.doi.org/10.1093/bioinformatics/btaa457 |
Ejemplares similares
-
On the feasibility of deep learning applications using raw mass spectrometry data
por: Cadow, Joris, et al.
Publicado: (2021) -
Deep multiple instance learning classifies subtissue locations in mass spectrometry images from tissue-level annotations
por: Guo, Dan, et al.
Publicado: (2020) -
DeepGraphGO: graph neural network for large-scale, multispecies protein function prediction
por: You, Ronghui, et al.
Publicado: (2021) -
QDeep: distance-based protein model quality estimation by residue-level ensemble error classifications using stacked deep residual neural networks
por: Shuvo, Md Hossain, et al.
Publicado: (2020) -
Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data
por: Huang, Daiyun, et al.
Publicado: (2021)