Cargando…
Support vector machine prediction of obstructive sleep apnea in a large-scale Chinese clinical sample
STUDY OBJECTIVES: Polysomnography is the gold standard for diagnosis of obstructive sleep apnea (OSA) but it is costly and access is often limited. The aim of this study is to develop a clinically useful support vector machine (SVM)-based prediction model to identify patients with high probability o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355399/ https://www.ncbi.nlm.nih.gov/pubmed/31917446 http://dx.doi.org/10.1093/sleep/zsz295 |