Cargando…
Support vector machine prediction of obstructive sleep apnea in a large-scale Chinese clinical sample
STUDY OBJECTIVES: Polysomnography is the gold standard for diagnosis of obstructive sleep apnea (OSA) but it is costly and access is often limited. The aim of this study is to develop a clinically useful support vector machine (SVM)-based prediction model to identify patients with high probability o...
Autores principales: | Huang, Wen-Chi, Lee, Pei-Lin, Liu, Yu-Ting, Chiang, Ambrose A, Lai, Feipei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355399/ https://www.ncbi.nlm.nih.gov/pubmed/31917446 http://dx.doi.org/10.1093/sleep/zsz295 |
Ejemplares similares
-
Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea
por: Korkalainen, Henri, et al.
Publicado: (2020) -
A scalable method of determining physiological endotypes of sleep apnea from a polysomnographic sleep study
por: Finnsson, Eysteinn, et al.
Publicado: (2020) -
Dexmedetomidine-induced deep sedation mimics non-rapid eye movement stage 3 sleep: large-scale validation using machine learning
por: Ramaswamy, Sowmya M, et al.
Publicado: (2020) -
Estimating daytime sleepiness with previous night electroencephalography, electrooculography, and electromyography spectrograms in patients with suspected sleep apnea using a convolutional neural network
por: Nikkonen, Sami, et al.
Publicado: (2020) -
A multitrait, multimethod matrix approach for a consumer-grade wrist-worn watch measuring sleep duration and continuity
por: Bliwise, Donald L, et al.
Publicado: (2020)