Cargando…
A Minimal PKPD Interaction Model for Evaluating Synergy Effects of Combined NSCLC Therapies
This paper introduces a mathematical compartmental formulation of dose-effect synergy modelling for multiple therapies in non small cell lung cancer (NSCLC): antiangiogenic, immuno- and radiotherapy. The model formulates the dose-effect relationship in a unified context, with tumor proliferating rat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356515/ https://www.ncbi.nlm.nih.gov/pubmed/32545464 http://dx.doi.org/10.3390/jcm9061832 |
_version_ | 1783558507414421504 |
---|---|
author | Ionescu, Clara Mihaela Ghita, Maria Copot, Dana Derom, Eric Verellen, Dirk |
author_facet | Ionescu, Clara Mihaela Ghita, Maria Copot, Dana Derom, Eric Verellen, Dirk |
author_sort | Ionescu, Clara Mihaela |
collection | PubMed |
description | This paper introduces a mathematical compartmental formulation of dose-effect synergy modelling for multiple therapies in non small cell lung cancer (NSCLC): antiangiogenic, immuno- and radiotherapy. The model formulates the dose-effect relationship in a unified context, with tumor proliferating rates and necrotic tissue volume progression as a function of therapy management profiles. The model accounts for inter- and intra-response variability by using surface model response terms. Slow acting peripheral compartments such as fat and muscle for drug distribution are not modelled. This minimal pharmacokinetic-pharmacodynamic (PKPD) model is evaluated with reported data in mice from literature. A systematic analysis is performed by varying only radiotherapy profiles, while antiangiogenesis and immunotherapy are fixed to their initial profiles. Three radiotherapy protocols are selected from literature: (1) a single dose 5 Gy once weekly; (2) a dose of 5 Gy × 3 days followed by a 2 Gy × 3 days after two weeks and (3) a dose of 5 Gy + 2 × 0.075 Gy followed after two weeks by a 2 Gy + 2 × 0.075 Gy dose. A reduction of 28% in tumor end-volume after 30 days was observed in Protocol 2 when compared to Protocol 1. No changes in end-volume were observed between Protocol 2 and Protocol 3, this in agreement with other literature studies. Additional analysis on drug interaction suggested that higher synergy among drugs affects up to three-fold the tumor volume (increased synergy leads to significantly lower growth ratio and lower total tumor volume). Similarly, changes in patient response indicated that increased drug resistance leads to lower reduction rates of tumor volumes, with end-volume increased up to 25–30%. In conclusion, the proposed minimal PKPD model has physiological value and can be used to study therapy management protocols and is an aiding tool in the clinical decision making process. Although developed with data from mice studies, the model is scalable to NSCLC patients. |
format | Online Article Text |
id | pubmed-7356515 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73565152020-07-30 A Minimal PKPD Interaction Model for Evaluating Synergy Effects of Combined NSCLC Therapies Ionescu, Clara Mihaela Ghita, Maria Copot, Dana Derom, Eric Verellen, Dirk J Clin Med Article This paper introduces a mathematical compartmental formulation of dose-effect synergy modelling for multiple therapies in non small cell lung cancer (NSCLC): antiangiogenic, immuno- and radiotherapy. The model formulates the dose-effect relationship in a unified context, with tumor proliferating rates and necrotic tissue volume progression as a function of therapy management profiles. The model accounts for inter- and intra-response variability by using surface model response terms. Slow acting peripheral compartments such as fat and muscle for drug distribution are not modelled. This minimal pharmacokinetic-pharmacodynamic (PKPD) model is evaluated with reported data in mice from literature. A systematic analysis is performed by varying only radiotherapy profiles, while antiangiogenesis and immunotherapy are fixed to their initial profiles. Three radiotherapy protocols are selected from literature: (1) a single dose 5 Gy once weekly; (2) a dose of 5 Gy × 3 days followed by a 2 Gy × 3 days after two weeks and (3) a dose of 5 Gy + 2 × 0.075 Gy followed after two weeks by a 2 Gy + 2 × 0.075 Gy dose. A reduction of 28% in tumor end-volume after 30 days was observed in Protocol 2 when compared to Protocol 1. No changes in end-volume were observed between Protocol 2 and Protocol 3, this in agreement with other literature studies. Additional analysis on drug interaction suggested that higher synergy among drugs affects up to three-fold the tumor volume (increased synergy leads to significantly lower growth ratio and lower total tumor volume). Similarly, changes in patient response indicated that increased drug resistance leads to lower reduction rates of tumor volumes, with end-volume increased up to 25–30%. In conclusion, the proposed minimal PKPD model has physiological value and can be used to study therapy management protocols and is an aiding tool in the clinical decision making process. Although developed with data from mice studies, the model is scalable to NSCLC patients. MDPI 2020-06-12 /pmc/articles/PMC7356515/ /pubmed/32545464 http://dx.doi.org/10.3390/jcm9061832 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ionescu, Clara Mihaela Ghita, Maria Copot, Dana Derom, Eric Verellen, Dirk A Minimal PKPD Interaction Model for Evaluating Synergy Effects of Combined NSCLC Therapies |
title | A Minimal PKPD Interaction Model for Evaluating Synergy Effects of Combined NSCLC Therapies |
title_full | A Minimal PKPD Interaction Model for Evaluating Synergy Effects of Combined NSCLC Therapies |
title_fullStr | A Minimal PKPD Interaction Model for Evaluating Synergy Effects of Combined NSCLC Therapies |
title_full_unstemmed | A Minimal PKPD Interaction Model for Evaluating Synergy Effects of Combined NSCLC Therapies |
title_short | A Minimal PKPD Interaction Model for Evaluating Synergy Effects of Combined NSCLC Therapies |
title_sort | minimal pkpd interaction model for evaluating synergy effects of combined nsclc therapies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356515/ https://www.ncbi.nlm.nih.gov/pubmed/32545464 http://dx.doi.org/10.3390/jcm9061832 |
work_keys_str_mv | AT ionescuclaramihaela aminimalpkpdinteractionmodelforevaluatingsynergyeffectsofcombinednsclctherapies AT ghitamaria aminimalpkpdinteractionmodelforevaluatingsynergyeffectsofcombinednsclctherapies AT copotdana aminimalpkpdinteractionmodelforevaluatingsynergyeffectsofcombinednsclctherapies AT deromeric aminimalpkpdinteractionmodelforevaluatingsynergyeffectsofcombinednsclctherapies AT verellendirk aminimalpkpdinteractionmodelforevaluatingsynergyeffectsofcombinednsclctherapies AT ionescuclaramihaela minimalpkpdinteractionmodelforevaluatingsynergyeffectsofcombinednsclctherapies AT ghitamaria minimalpkpdinteractionmodelforevaluatingsynergyeffectsofcombinednsclctherapies AT copotdana minimalpkpdinteractionmodelforevaluatingsynergyeffectsofcombinednsclctherapies AT deromeric minimalpkpdinteractionmodelforevaluatingsynergyeffectsofcombinednsclctherapies AT verellendirk minimalpkpdinteractionmodelforevaluatingsynergyeffectsofcombinednsclctherapies |