Cargando…
Bayesian central statistical monitoring using finite mixture models in multicenter clinical trials
BACKGROUND: Central monitoring (CM), in which data across all clinical sites are monitored, has an important role in risk-based monitoring. Several statistical methods have been proposed to compare patient outcomes among the sites for detecting atypical sites that have different trends in observed d...
Autores principales: | Hatayama, Tomoyoshi, Yasui, Seiichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358264/ https://www.ncbi.nlm.nih.gov/pubmed/32685763 http://dx.doi.org/10.1016/j.conctc.2020.100566 |
Ejemplares similares
-
CUSUMIN: A cumulative sum interval design for cancer phase I dose finding studies
por: Hatayama, Tomoyoshi, et al.
Publicado: (2022) -
Comparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models
por: Nasserinejad, Kazem, et al.
Publicado: (2017) -
Central statistical monitoring in clinical trials
por: Kirkwood, Amy A, et al.
Publicado: (2011) -
Using Bayesian statistics for modeling PTSD through Latent Growth Mixture Modeling: implementation and discussion
por: Depaoli, Sarah, et al.
Publicado: (2015) -
Medical applications of finite mixture models
por: Schlattmann, Peter
Publicado: (2009)