Cargando…

Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning

Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize...

Descripción completa

Detalles Bibliográficos
Autores principales: Shevitski, Brian, Chen, Christopher T., Kastl, Christoph, Kuykendall, Tevye, Schwartzberg, Adam, Aloni, Shaul, Zettl, Alex
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360754/
https://www.ncbi.nlm.nih.gov/pubmed/32665582
http://dx.doi.org/10.1038/s41598-020-68321-7
Descripción
Sumario:Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize the nanocrystalline grain structure and texture of monolayer WS(2) films using scanning nanobeam electron diffraction coupled with multivariate statistical analysis of the resulting data. Our analysis pipeline is highly generalizable and is a useful alternative to the time consuming, complex, and system-dependent methodology traditionally used to analyze spatially resolved electron diffraction measurements.