Cargando…
Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning
Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360754/ https://www.ncbi.nlm.nih.gov/pubmed/32665582 http://dx.doi.org/10.1038/s41598-020-68321-7 |
_version_ | 1783559273055256576 |
---|---|
author | Shevitski, Brian Chen, Christopher T. Kastl, Christoph Kuykendall, Tevye Schwartzberg, Adam Aloni, Shaul Zettl, Alex |
author_facet | Shevitski, Brian Chen, Christopher T. Kastl, Christoph Kuykendall, Tevye Schwartzberg, Adam Aloni, Shaul Zettl, Alex |
author_sort | Shevitski, Brian |
collection | PubMed |
description | Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize the nanocrystalline grain structure and texture of monolayer WS(2) films using scanning nanobeam electron diffraction coupled with multivariate statistical analysis of the resulting data. Our analysis pipeline is highly generalizable and is a useful alternative to the time consuming, complex, and system-dependent methodology traditionally used to analyze spatially resolved electron diffraction measurements. |
format | Online Article Text |
id | pubmed-7360754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-73607542020-07-16 Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning Shevitski, Brian Chen, Christopher T. Kastl, Christoph Kuykendall, Tevye Schwartzberg, Adam Aloni, Shaul Zettl, Alex Sci Rep Article Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize the nanocrystalline grain structure and texture of monolayer WS(2) films using scanning nanobeam electron diffraction coupled with multivariate statistical analysis of the resulting data. Our analysis pipeline is highly generalizable and is a useful alternative to the time consuming, complex, and system-dependent methodology traditionally used to analyze spatially resolved electron diffraction measurements. Nature Publishing Group UK 2020-07-14 /pmc/articles/PMC7360754/ /pubmed/32665582 http://dx.doi.org/10.1038/s41598-020-68321-7 Text en © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Shevitski, Brian Chen, Christopher T. Kastl, Christoph Kuykendall, Tevye Schwartzberg, Adam Aloni, Shaul Zettl, Alex Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning |
title | Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning |
title_full | Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning |
title_fullStr | Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning |
title_full_unstemmed | Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning |
title_short | Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning |
title_sort | characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360754/ https://www.ncbi.nlm.nih.gov/pubmed/32665582 http://dx.doi.org/10.1038/s41598-020-68321-7 |
work_keys_str_mv | AT shevitskibrian characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning AT chenchristophert characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning AT kastlchristoph characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning AT kuykendalltevye characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning AT schwartzbergadam characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning AT alonishaul characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning AT zettlalex characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning |