Cargando…

Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning

Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize...

Descripción completa

Detalles Bibliográficos
Autores principales: Shevitski, Brian, Chen, Christopher T., Kastl, Christoph, Kuykendall, Tevye, Schwartzberg, Adam, Aloni, Shaul, Zettl, Alex
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360754/
https://www.ncbi.nlm.nih.gov/pubmed/32665582
http://dx.doi.org/10.1038/s41598-020-68321-7
_version_ 1783559273055256576
author Shevitski, Brian
Chen, Christopher T.
Kastl, Christoph
Kuykendall, Tevye
Schwartzberg, Adam
Aloni, Shaul
Zettl, Alex
author_facet Shevitski, Brian
Chen, Christopher T.
Kastl, Christoph
Kuykendall, Tevye
Schwartzberg, Adam
Aloni, Shaul
Zettl, Alex
author_sort Shevitski, Brian
collection PubMed
description Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize the nanocrystalline grain structure and texture of monolayer WS(2) films using scanning nanobeam electron diffraction coupled with multivariate statistical analysis of the resulting data. Our analysis pipeline is highly generalizable and is a useful alternative to the time consuming, complex, and system-dependent methodology traditionally used to analyze spatially resolved electron diffraction measurements.
format Online
Article
Text
id pubmed-7360754
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-73607542020-07-16 Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning Shevitski, Brian Chen, Christopher T. Kastl, Christoph Kuykendall, Tevye Schwartzberg, Adam Aloni, Shaul Zettl, Alex Sci Rep Article Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize the nanocrystalline grain structure and texture of monolayer WS(2) films using scanning nanobeam electron diffraction coupled with multivariate statistical analysis of the resulting data. Our analysis pipeline is highly generalizable and is a useful alternative to the time consuming, complex, and system-dependent methodology traditionally used to analyze spatially resolved electron diffraction measurements. Nature Publishing Group UK 2020-07-14 /pmc/articles/PMC7360754/ /pubmed/32665582 http://dx.doi.org/10.1038/s41598-020-68321-7 Text en © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Shevitski, Brian
Chen, Christopher T.
Kastl, Christoph
Kuykendall, Tevye
Schwartzberg, Adam
Aloni, Shaul
Zettl, Alex
Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning
title Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning
title_full Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning
title_fullStr Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning
title_full_unstemmed Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning
title_short Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning
title_sort characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360754/
https://www.ncbi.nlm.nih.gov/pubmed/32665582
http://dx.doi.org/10.1038/s41598-020-68321-7
work_keys_str_mv AT shevitskibrian characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning
AT chenchristophert characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning
AT kastlchristoph characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning
AT kuykendalltevye characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning
AT schwartzbergadam characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning
AT alonishaul characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning
AT zettlalex characterizingtransitionmetaldichalcogenidethinfilmsusinghyperspectralimagingandmachinelearning