Cargando…

Gene–methylation interactions: discovering region-wise DNA methylation levels that modify SNP-associated disease risk

BACKGROUND: Current technology allows rapid assessment of DNA sequences and methylation levels at a single-site resolution for hundreds of thousands of sites in the human genome, in thousands of individuals simultaneously. This has led to an increase in epigenome-wide association studies (EWAS) of c...

Descripción completa

Detalles Bibliográficos
Autores principales: Romanowska, Julia, Haaland, Øystein A., Jugessur, Astanand, Gjerdevik, Miriam, Xu, Zongli, Taylor, Jack, Wilcox, Allen J., Jonassen, Inge, Lie, Rolv T., Gjessing, Håkon K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367265/
https://www.ncbi.nlm.nih.gov/pubmed/32678018
http://dx.doi.org/10.1186/s13148-020-00881-x
Descripción
Sumario:BACKGROUND: Current technology allows rapid assessment of DNA sequences and methylation levels at a single-site resolution for hundreds of thousands of sites in the human genome, in thousands of individuals simultaneously. This has led to an increase in epigenome-wide association studies (EWAS) of complex traits, particularly those that are poorly explained by previous genome-wide association studies (GWAS). However, the genome and epigenome are intertwined, e.g., DNA methylation is known to affect gene expression through, for example, genomic imprinting. There is thus a need to go beyond single-omics data analyses and develop interaction models that allow a meaningful combination of information from EWAS and GWAS. RESULTS: We present two new methods for genetic association analyses that treat offspring DNA methylation levels as environmental exposure. Our approach searches for statistical interactions between SNP alleles and DNA methylation (G ×Me) and between parent-of-origin effects and DNA methylation (PoO ×Me), using case-parent triads or dyads. We use summarized methylation levels over nearby genomic region to ease biological interpretation. The methods were tested on a dataset of parent–offspring dyads, with EWAS data on the offspring. Our results showed that methylation levels around a SNP can significantly alter the estimated relative risk. Moreover, we show how a control dataset can identify false positives. CONCLUSIONS: The new methods, G ×Me and PoO ×Me, integrate DNA methylation in the assessment of genetic relative risks and thus enable a more comprehensive biological interpretation of genome-wide scans. Moreover, our strategy of condensing DNA methylation levels within regions helps overcome specific disadvantages of using sparse chip-based measurements. The methods are implemented in the freely available R package Haplin (https://cran.r-project.org/package=Haplin), enabling fast scans of multi-omics datasets.