Cargando…
Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns
BACKGROUND: The binding sites of transcription factors (TFs) and the localisation of histone modifications in the human genome can be quantified by the chromatin immunoprecipitation assay coupled with next-generation sequencing (ChIP-seq). The resulting chromatin feature data has been successfully a...
Autores principales: | Osmala, Maria, Lähdesmäki, Harri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370432/ https://www.ncbi.nlm.nih.gov/pubmed/32689977 http://dx.doi.org/10.1186/s12859-020-03621-3 |
Ejemplares similares
-
ChromDMM: a Dirichlet-multinomial mixture model for clustering heterogeneous epigenetic data
por: Osmala, Maria, et al.
Publicado: (2022) -
Discovering feature relevancy and dependency by kernel-guided probabilistic model-building evolution
por: Rodriguez, Nestor, et al.
Publicado: (2017) -
Probabilistic modeling methods for cell-free DNA methylation based cancer classification
por: Halla-aho, Viivi, et al.
Publicado: (2022) -
A joint finite mixture model for clustering genes from independent Gaussian and beta distributed data
por: Dai, Xiaofeng, et al.
Publicado: (2009) -
MixChIP: a probabilistic method for cell type specific protein-DNA binding analysis
por: Rautio, Sini, et al.
Publicado: (2015)