Cargando…

Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells

Proinflammatory cytokines stimulate expression of β-secretase, which increases processing of amyloid precursor protein (APP), ultimately leading to the deposition of amyloid beta (Aβ). The N-terminal domain of β-cleaved APP supports Cu/NO-dependent release of heparan sulfate (HS) from the glypican-1...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Fang, Fransson, Lars-Åke, Mani, Katrin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372925/
https://www.ncbi.nlm.nih.gov/pubmed/32039447
http://dx.doi.org/10.1093/glycob/cwaa011
_version_ 1783561409187020800
author Cheng, Fang
Fransson, Lars-Åke
Mani, Katrin
author_facet Cheng, Fang
Fransson, Lars-Åke
Mani, Katrin
author_sort Cheng, Fang
collection PubMed
description Proinflammatory cytokines stimulate expression of β-secretase, which increases processing of amyloid precursor protein (APP), ultimately leading to the deposition of amyloid beta (Aβ). The N-terminal domain of β-cleaved APP supports Cu/NO-dependent release of heparan sulfate (HS) from the glypican-1 (Gpc-1) proteoglycan. HS is an inhibitor of β-secretase, thereby constituting a regulatory, negative feedback loop. Here, we have investigated the effect of the proinflammatory cytokines TNF-α, IL-1β and IL-6 on the interplay between APP processing and release of HS from Gpc-1 in neuronal cells. We have used deconvolution immunofluorescence microscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and a panel of monoclonal/polyclonal antibodies recognizing the released HS, the N-terminus of Aβ, Aβ, the C-terminus of APP and the autophagosome marker LC3 as well as the chemical lysosome marker LysoTrackerRed (LTR). We repeatedly found that N2a neuroblastoma cells and human neural stem cells grown in the presence of the cytokines developed large cytoplasmic clusters, which stained positive for HS, the N-terminus of Aβ, Aβ, the C-terminus of APP, LC3 and LTR, indicating accumulation of HS and APP/APP degradation products in enlarged autophagosomes/lysosomes. The SDS-PAGE of immunoisolates obtained from TNF-α-treated N2a cells by using anti-C-terminus of APP revealed the presence of SDS-stable complexes between HS and the C-terminal fragment of β-cleaved APP (βCTF) migrating in the range 10–18 kDa. Clustered accumulation of βCTF disappeared when HS release was prevented and slightly enhanced when HS release was increased. Hence, when proinflammatory cytokines induce increased processing of APP, inhibition of β-secretase by HS is insufficient, which may lead to the impaired autophagosomal degradation.
format Online
Article
Text
id pubmed-7372925
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-73729252020-07-23 Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells Cheng, Fang Fransson, Lars-Åke Mani, Katrin Glycobiology Neurobiology Proinflammatory cytokines stimulate expression of β-secretase, which increases processing of amyloid precursor protein (APP), ultimately leading to the deposition of amyloid beta (Aβ). The N-terminal domain of β-cleaved APP supports Cu/NO-dependent release of heparan sulfate (HS) from the glypican-1 (Gpc-1) proteoglycan. HS is an inhibitor of β-secretase, thereby constituting a regulatory, negative feedback loop. Here, we have investigated the effect of the proinflammatory cytokines TNF-α, IL-1β and IL-6 on the interplay between APP processing and release of HS from Gpc-1 in neuronal cells. We have used deconvolution immunofluorescence microscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and a panel of monoclonal/polyclonal antibodies recognizing the released HS, the N-terminus of Aβ, Aβ, the C-terminus of APP and the autophagosome marker LC3 as well as the chemical lysosome marker LysoTrackerRed (LTR). We repeatedly found that N2a neuroblastoma cells and human neural stem cells grown in the presence of the cytokines developed large cytoplasmic clusters, which stained positive for HS, the N-terminus of Aβ, Aβ, the C-terminus of APP, LC3 and LTR, indicating accumulation of HS and APP/APP degradation products in enlarged autophagosomes/lysosomes. The SDS-PAGE of immunoisolates obtained from TNF-α-treated N2a cells by using anti-C-terminus of APP revealed the presence of SDS-stable complexes between HS and the C-terminal fragment of β-cleaved APP (βCTF) migrating in the range 10–18 kDa. Clustered accumulation of βCTF disappeared when HS release was prevented and slightly enhanced when HS release was increased. Hence, when proinflammatory cytokines induce increased processing of APP, inhibition of β-secretase by HS is insufficient, which may lead to the impaired autophagosomal degradation. Oxford University Press 2020-02-10 /pmc/articles/PMC7372925/ /pubmed/32039447 http://dx.doi.org/10.1093/glycob/cwaa011 Text en © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Neurobiology
Cheng, Fang
Fransson, Lars-Åke
Mani, Katrin
Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells
title Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells
title_full Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells
title_fullStr Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells
title_full_unstemmed Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells
title_short Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells
title_sort proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the c-terminal fragment of β-cleaved app in autophagosomes of dividing neuronal cells
topic Neurobiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372925/
https://www.ncbi.nlm.nih.gov/pubmed/32039447
http://dx.doi.org/10.1093/glycob/cwaa011
work_keys_str_mv AT chengfang proinflammatorycytokinesinduceaccumulationofglypican1derivedheparansulfateandthecterminalfragmentofbcleavedappinautophagosomesofdividingneuronalcells
AT franssonlarsake proinflammatorycytokinesinduceaccumulationofglypican1derivedheparansulfateandthecterminalfragmentofbcleavedappinautophagosomesofdividingneuronalcells
AT manikatrin proinflammatorycytokinesinduceaccumulationofglypican1derivedheparansulfateandthecterminalfragmentofbcleavedappinautophagosomesofdividingneuronalcells