Cargando…
Metabolic labeling of RNA uncovers the contribution of transcription and decay rates on hypoxia-induced changes in RNA levels
Cells adapt to environmental changes, including fluctuations in oxygen levels, through the induction of specific gene expression programs. However, most transcriptomic studies do not distinguish the relative contribution of transcription, RNA processing, and RNA degradation processes to cellular hom...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373995/ https://www.ncbi.nlm.nih.gov/pubmed/32295863 http://dx.doi.org/10.1261/rna.072611.119 |
_version_ | 1783561606564675584 |
---|---|
author | Tiana, Maria Acosta-Iborra, Bárbara Hernández, Rosana Galiana, Clara Fernández-Moreno, Miguel Ángel Jimenez, Benilde del Peso, Luis |
author_facet | Tiana, Maria Acosta-Iborra, Bárbara Hernández, Rosana Galiana, Clara Fernández-Moreno, Miguel Ángel Jimenez, Benilde del Peso, Luis |
author_sort | Tiana, Maria |
collection | PubMed |
description | Cells adapt to environmental changes, including fluctuations in oxygen levels, through the induction of specific gene expression programs. However, most transcriptomic studies do not distinguish the relative contribution of transcription, RNA processing, and RNA degradation processes to cellular homeostasis. Here we used metabolic labeling followed by massive parallel sequencing of newly transcribed and preexisting RNA fractions to simultaneously analyze RNA synthesis and decay in primary endothelial cells exposed to low oxygen tension. We found that changes in transcription rates induced by hypoxia are the major determinant of changes in RNA levels. However, degradation rates also had a significant contribution, accounting for 24% of the observed variability in total mRNA. In addition, our results indicated that hypoxia led to a reduction of the overall mRNA stability from a median half-life in normoxia of 8.7 h, to 5.7 h in hypoxia. Analysis of RNA content per cell confirmed a decrease of both mRNA and total RNA in hypoxic samples and that this effect is dependent on the EGLN/HIF/TSC2 axis. This effect could potentially contribute to fundamental global responses such as inhibition of translation in hypoxia. In summary, our study provides a quantitative analysis of the contribution of RNA synthesis and stability to the transcriptional response to hypoxia and uncovers an unexpected effect on the latter. |
format | Online Article Text |
id | pubmed-7373995 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-73739952021-08-01 Metabolic labeling of RNA uncovers the contribution of transcription and decay rates on hypoxia-induced changes in RNA levels Tiana, Maria Acosta-Iborra, Bárbara Hernández, Rosana Galiana, Clara Fernández-Moreno, Miguel Ángel Jimenez, Benilde del Peso, Luis RNA Article Cells adapt to environmental changes, including fluctuations in oxygen levels, through the induction of specific gene expression programs. However, most transcriptomic studies do not distinguish the relative contribution of transcription, RNA processing, and RNA degradation processes to cellular homeostasis. Here we used metabolic labeling followed by massive parallel sequencing of newly transcribed and preexisting RNA fractions to simultaneously analyze RNA synthesis and decay in primary endothelial cells exposed to low oxygen tension. We found that changes in transcription rates induced by hypoxia are the major determinant of changes in RNA levels. However, degradation rates also had a significant contribution, accounting for 24% of the observed variability in total mRNA. In addition, our results indicated that hypoxia led to a reduction of the overall mRNA stability from a median half-life in normoxia of 8.7 h, to 5.7 h in hypoxia. Analysis of RNA content per cell confirmed a decrease of both mRNA and total RNA in hypoxic samples and that this effect is dependent on the EGLN/HIF/TSC2 axis. This effect could potentially contribute to fundamental global responses such as inhibition of translation in hypoxia. In summary, our study provides a quantitative analysis of the contribution of RNA synthesis and stability to the transcriptional response to hypoxia and uncovers an unexpected effect on the latter. Cold Spring Harbor Laboratory Press 2020-08 /pmc/articles/PMC7373995/ /pubmed/32295863 http://dx.doi.org/10.1261/rna.072611.119 Text en © 2020 Tiana et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by the RNA Society for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Article Tiana, Maria Acosta-Iborra, Bárbara Hernández, Rosana Galiana, Clara Fernández-Moreno, Miguel Ángel Jimenez, Benilde del Peso, Luis Metabolic labeling of RNA uncovers the contribution of transcription and decay rates on hypoxia-induced changes in RNA levels |
title | Metabolic labeling of RNA uncovers the contribution of transcription and decay rates on hypoxia-induced changes in RNA levels |
title_full | Metabolic labeling of RNA uncovers the contribution of transcription and decay rates on hypoxia-induced changes in RNA levels |
title_fullStr | Metabolic labeling of RNA uncovers the contribution of transcription and decay rates on hypoxia-induced changes in RNA levels |
title_full_unstemmed | Metabolic labeling of RNA uncovers the contribution of transcription and decay rates on hypoxia-induced changes in RNA levels |
title_short | Metabolic labeling of RNA uncovers the contribution of transcription and decay rates on hypoxia-induced changes in RNA levels |
title_sort | metabolic labeling of rna uncovers the contribution of transcription and decay rates on hypoxia-induced changes in rna levels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373995/ https://www.ncbi.nlm.nih.gov/pubmed/32295863 http://dx.doi.org/10.1261/rna.072611.119 |
work_keys_str_mv | AT tianamaria metaboliclabelingofrnauncoversthecontributionoftranscriptionanddecayratesonhypoxiainducedchangesinrnalevels AT acostaiborrabarbara metaboliclabelingofrnauncoversthecontributionoftranscriptionanddecayratesonhypoxiainducedchangesinrnalevels AT hernandezrosana metaboliclabelingofrnauncoversthecontributionoftranscriptionanddecayratesonhypoxiainducedchangesinrnalevels AT galianaclara metaboliclabelingofrnauncoversthecontributionoftranscriptionanddecayratesonhypoxiainducedchangesinrnalevels AT fernandezmorenomiguelangel metaboliclabelingofrnauncoversthecontributionoftranscriptionanddecayratesonhypoxiainducedchangesinrnalevels AT jimenezbenilde metaboliclabelingofrnauncoversthecontributionoftranscriptionanddecayratesonhypoxiainducedchangesinrnalevels AT delpesoluis metaboliclabelingofrnauncoversthecontributionoftranscriptionanddecayratesonhypoxiainducedchangesinrnalevels |