Cargando…

Welding Seam Trajectory Recognition for Automated Skip Welding Guidance of a Spatially Intermittent Welding Seam Based on Laser Vision Sensor

To solve the problems of low teaching programming efficiency and poor flexibility in robot welding of complex box girder structures, a method of seam trajectory recognition based on laser scanning displacement sensing was proposed for automated guidance of a welding torch in the skip welding of a sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Gaoyang, Hong, Yuxiang, Gao, Jiapeng, Hong, Bo, Li, Xiangwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374446/
https://www.ncbi.nlm.nih.gov/pubmed/32610685
http://dx.doi.org/10.3390/s20133657
_version_ 1783561701015158784
author Li, Gaoyang
Hong, Yuxiang
Gao, Jiapeng
Hong, Bo
Li, Xiangwen
author_facet Li, Gaoyang
Hong, Yuxiang
Gao, Jiapeng
Hong, Bo
Li, Xiangwen
author_sort Li, Gaoyang
collection PubMed
description To solve the problems of low teaching programming efficiency and poor flexibility in robot welding of complex box girder structures, a method of seam trajectory recognition based on laser scanning displacement sensing was proposed for automated guidance of a welding torch in the skip welding of a spatially intermittent welding seam. Firstly, a laser scanning displacement sensing system for measuring angles adaptively is developed to detect corner features of complex structures. Secondly, a weld trajectory recognition algorithm based on Euclidean distance discrimination is proposed. The algorithm extracts the shape features by constructing the characteristic triangle of the weld trajectory, and then processes the set of shape features by discrete Fourier analysis to solve the feature vector used to describe the shape. Finally, based on the Euclidean distance between the feature vector of the test sample and the class matching library, the class to which the sample belongs is identified to distinguish the weld trajectory. The experimental results show that the classification accuracy rate of four typical spatial discontinuous welds in complex box girder structure is 100%. The overall processing time for weld trajectory detection and classification does not exceed 65 ms. Based on this method, the field test was completed in the folding special container production line. The results show that the system proposed in this paper can accurately identify discontinuous welds during high-speed metal active gas arc welding (MAG) welding with a welding speed of 1.2 m/min, and guide the welding torch to automatically complete the skip welding, which greatly improves the welding manufacturing efficiency and quality stability in the processing of complex box girder components. This method does not require a time-consuming pre-welding teaching programming and visual inspection system calibration, and provides a new technical approach for highly efficient and flexible welding manufacturing of discontinuous welding seams of complex structures, which is expected to be applied to the welding manufacturing of core components in heavy and large industries such as port cranes, large logistics transportation equipment, and rail transit.
format Online
Article
Text
id pubmed-7374446
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-73744462020-08-06 Welding Seam Trajectory Recognition for Automated Skip Welding Guidance of a Spatially Intermittent Welding Seam Based on Laser Vision Sensor Li, Gaoyang Hong, Yuxiang Gao, Jiapeng Hong, Bo Li, Xiangwen Sensors (Basel) Article To solve the problems of low teaching programming efficiency and poor flexibility in robot welding of complex box girder structures, a method of seam trajectory recognition based on laser scanning displacement sensing was proposed for automated guidance of a welding torch in the skip welding of a spatially intermittent welding seam. Firstly, a laser scanning displacement sensing system for measuring angles adaptively is developed to detect corner features of complex structures. Secondly, a weld trajectory recognition algorithm based on Euclidean distance discrimination is proposed. The algorithm extracts the shape features by constructing the characteristic triangle of the weld trajectory, and then processes the set of shape features by discrete Fourier analysis to solve the feature vector used to describe the shape. Finally, based on the Euclidean distance between the feature vector of the test sample and the class matching library, the class to which the sample belongs is identified to distinguish the weld trajectory. The experimental results show that the classification accuracy rate of four typical spatial discontinuous welds in complex box girder structure is 100%. The overall processing time for weld trajectory detection and classification does not exceed 65 ms. Based on this method, the field test was completed in the folding special container production line. The results show that the system proposed in this paper can accurately identify discontinuous welds during high-speed metal active gas arc welding (MAG) welding with a welding speed of 1.2 m/min, and guide the welding torch to automatically complete the skip welding, which greatly improves the welding manufacturing efficiency and quality stability in the processing of complex box girder components. This method does not require a time-consuming pre-welding teaching programming and visual inspection system calibration, and provides a new technical approach for highly efficient and flexible welding manufacturing of discontinuous welding seams of complex structures, which is expected to be applied to the welding manufacturing of core components in heavy and large industries such as port cranes, large logistics transportation equipment, and rail transit. MDPI 2020-06-29 /pmc/articles/PMC7374446/ /pubmed/32610685 http://dx.doi.org/10.3390/s20133657 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Li, Gaoyang
Hong, Yuxiang
Gao, Jiapeng
Hong, Bo
Li, Xiangwen
Welding Seam Trajectory Recognition for Automated Skip Welding Guidance of a Spatially Intermittent Welding Seam Based on Laser Vision Sensor
title Welding Seam Trajectory Recognition for Automated Skip Welding Guidance of a Spatially Intermittent Welding Seam Based on Laser Vision Sensor
title_full Welding Seam Trajectory Recognition for Automated Skip Welding Guidance of a Spatially Intermittent Welding Seam Based on Laser Vision Sensor
title_fullStr Welding Seam Trajectory Recognition for Automated Skip Welding Guidance of a Spatially Intermittent Welding Seam Based on Laser Vision Sensor
title_full_unstemmed Welding Seam Trajectory Recognition for Automated Skip Welding Guidance of a Spatially Intermittent Welding Seam Based on Laser Vision Sensor
title_short Welding Seam Trajectory Recognition for Automated Skip Welding Guidance of a Spatially Intermittent Welding Seam Based on Laser Vision Sensor
title_sort welding seam trajectory recognition for automated skip welding guidance of a spatially intermittent welding seam based on laser vision sensor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374446/
https://www.ncbi.nlm.nih.gov/pubmed/32610685
http://dx.doi.org/10.3390/s20133657
work_keys_str_mv AT ligaoyang weldingseamtrajectoryrecognitionforautomatedskipweldingguidanceofaspatiallyintermittentweldingseambasedonlaservisionsensor
AT hongyuxiang weldingseamtrajectoryrecognitionforautomatedskipweldingguidanceofaspatiallyintermittentweldingseambasedonlaservisionsensor
AT gaojiapeng weldingseamtrajectoryrecognitionforautomatedskipweldingguidanceofaspatiallyintermittentweldingseambasedonlaservisionsensor
AT hongbo weldingseamtrajectoryrecognitionforautomatedskipweldingguidanceofaspatiallyintermittentweldingseambasedonlaservisionsensor
AT lixiangwen weldingseamtrajectoryrecognitionforautomatedskipweldingguidanceofaspatiallyintermittentweldingseambasedonlaservisionsensor