Cargando…
B cell zone reticular cell microenvironments shape CXCL13 gradient formation
Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13(+) follicular reticular cells...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376062/ https://www.ncbi.nlm.nih.gov/pubmed/32699279 http://dx.doi.org/10.1038/s41467-020-17135-2 |
_version_ | 1783561969853267968 |
---|---|
author | Cosgrove, Jason Novkovic, Mario Albrecht, Stefan Pikor, Natalia B. Zhou, Zhaoukun Onder, Lucas Mörbe, Urs Cupovic, Jovana Miller, Helen Alden, Kieran Thuery, Anne O’Toole, Peter Pinter, Rita Jarrett, Simon Taylor, Emily Venetz, Daniel Heller, Manfred Uguccioni, Mariagrazia Legler, Daniel F. Lacey, Charles J. Coatesworth, Andrew Polak, Wojciech G. Cupedo, Tom Manoury, Bénedicte Thelen, Marcus Stein, Jens V. Wolf, Marlene Leake, Mark C. Timmis, Jon Ludewig, Burkhard Coles, Mark C. |
author_facet | Cosgrove, Jason Novkovic, Mario Albrecht, Stefan Pikor, Natalia B. Zhou, Zhaoukun Onder, Lucas Mörbe, Urs Cupovic, Jovana Miller, Helen Alden, Kieran Thuery, Anne O’Toole, Peter Pinter, Rita Jarrett, Simon Taylor, Emily Venetz, Daniel Heller, Manfred Uguccioni, Mariagrazia Legler, Daniel F. Lacey, Charles J. Coatesworth, Andrew Polak, Wojciech G. Cupedo, Tom Manoury, Bénedicte Thelen, Marcus Stein, Jens V. Wolf, Marlene Leake, Mark C. Timmis, Jon Ludewig, Burkhard Coles, Mark C. |
author_sort | Cosgrove, Jason |
collection | PubMed |
description | Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13(+) follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking. Consistent with this prediction, imaging analysis show that CXCL13 binds to extracellular matrix components in situ, constraining its diffusion. CXCL13 solubilization requires the protease cathepsin B that cleaves CXCL13 into a stable product. Mice lacking cathepsin B display aberrant follicular architecture, a phenotype associated with effective B cell homing to but not within lymph nodes. Our data thus suggest that reticular cells of the B cell zone generate microenvironments that shape both immobilized and soluble CXCL13 gradients. |
format | Online Article Text |
id | pubmed-7376062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-73760622020-07-24 B cell zone reticular cell microenvironments shape CXCL13 gradient formation Cosgrove, Jason Novkovic, Mario Albrecht, Stefan Pikor, Natalia B. Zhou, Zhaoukun Onder, Lucas Mörbe, Urs Cupovic, Jovana Miller, Helen Alden, Kieran Thuery, Anne O’Toole, Peter Pinter, Rita Jarrett, Simon Taylor, Emily Venetz, Daniel Heller, Manfred Uguccioni, Mariagrazia Legler, Daniel F. Lacey, Charles J. Coatesworth, Andrew Polak, Wojciech G. Cupedo, Tom Manoury, Bénedicte Thelen, Marcus Stein, Jens V. Wolf, Marlene Leake, Mark C. Timmis, Jon Ludewig, Burkhard Coles, Mark C. Nat Commun Article Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13(+) follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking. Consistent with this prediction, imaging analysis show that CXCL13 binds to extracellular matrix components in situ, constraining its diffusion. CXCL13 solubilization requires the protease cathepsin B that cleaves CXCL13 into a stable product. Mice lacking cathepsin B display aberrant follicular architecture, a phenotype associated with effective B cell homing to but not within lymph nodes. Our data thus suggest that reticular cells of the B cell zone generate microenvironments that shape both immobilized and soluble CXCL13 gradients. Nature Publishing Group UK 2020-07-22 /pmc/articles/PMC7376062/ /pubmed/32699279 http://dx.doi.org/10.1038/s41467-020-17135-2 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Cosgrove, Jason Novkovic, Mario Albrecht, Stefan Pikor, Natalia B. Zhou, Zhaoukun Onder, Lucas Mörbe, Urs Cupovic, Jovana Miller, Helen Alden, Kieran Thuery, Anne O’Toole, Peter Pinter, Rita Jarrett, Simon Taylor, Emily Venetz, Daniel Heller, Manfred Uguccioni, Mariagrazia Legler, Daniel F. Lacey, Charles J. Coatesworth, Andrew Polak, Wojciech G. Cupedo, Tom Manoury, Bénedicte Thelen, Marcus Stein, Jens V. Wolf, Marlene Leake, Mark C. Timmis, Jon Ludewig, Burkhard Coles, Mark C. B cell zone reticular cell microenvironments shape CXCL13 gradient formation |
title | B cell zone reticular cell microenvironments shape CXCL13 gradient formation |
title_full | B cell zone reticular cell microenvironments shape CXCL13 gradient formation |
title_fullStr | B cell zone reticular cell microenvironments shape CXCL13 gradient formation |
title_full_unstemmed | B cell zone reticular cell microenvironments shape CXCL13 gradient formation |
title_short | B cell zone reticular cell microenvironments shape CXCL13 gradient formation |
title_sort | b cell zone reticular cell microenvironments shape cxcl13 gradient formation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376062/ https://www.ncbi.nlm.nih.gov/pubmed/32699279 http://dx.doi.org/10.1038/s41467-020-17135-2 |
work_keys_str_mv | AT cosgrovejason bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT novkovicmario bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT albrechtstefan bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT pikornataliab bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT zhouzhaoukun bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT onderlucas bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT morbeurs bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT cupovicjovana bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT millerhelen bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT aldenkieran bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT thueryanne bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT otoolepeter bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT pinterrita bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT jarrettsimon bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT tayloremily bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT venetzdaniel bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT hellermanfred bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT uguccionimariagrazia bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT leglerdanielf bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT laceycharlesj bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT coatesworthandrew bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT polakwojciechg bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT cupedotom bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT manourybenedicte bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT thelenmarcus bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT steinjensv bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT wolfmarlene bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT leakemarkc bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT timmisjon bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT ludewigburkhard bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation AT colesmarkc bcellzonereticularcellmicroenvironmentsshapecxcl13gradientformation |