Cargando…

Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage

Phthiocerol dimycocerosates (PDIMs) are a class of mycobacterial lipids that promote virulence in Mycobacterium tuberculosis and Mycobacterium marinum. It has recently been shown that PDIMs work in concert with the M. tuberculosis Type VII secretion system ESX-1 to permeabilize the phagosomal membra...

Descripción completa

Detalles Bibliográficos
Autores principales: Osman, Morwan M., Pagán, Antonio J., Shanahan, Jonathan K., Ramakrishnan, Lalita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377490/
https://www.ncbi.nlm.nih.gov/pubmed/32701962
http://dx.doi.org/10.1371/journal.pone.0233252
_version_ 1783562227664551936
author Osman, Morwan M.
Pagán, Antonio J.
Shanahan, Jonathan K.
Ramakrishnan, Lalita
author_facet Osman, Morwan M.
Pagán, Antonio J.
Shanahan, Jonathan K.
Ramakrishnan, Lalita
author_sort Osman, Morwan M.
collection PubMed
description Phthiocerol dimycocerosates (PDIMs) are a class of mycobacterial lipids that promote virulence in Mycobacterium tuberculosis and Mycobacterium marinum. It has recently been shown that PDIMs work in concert with the M. tuberculosis Type VII secretion system ESX-1 to permeabilize the phagosomal membranes of infected macrophages. As the zebrafish-M. marinum model of infection has revealed the critical role of PDIM at the host-pathogen interface, we set to determine if PDIMs contributed to phagosomal permeabilization in M. marinum. Using an ΔmmpL7 mutant defective in PDIM transport, we find the PDIM-ESX-1 interaction to be conserved in an M. marinum macrophage infection model. However, we find PDIM and ESX-1 mutants differ in their degree of defect, with the PDIM mutant retaining more membrane damaging activity. Using an in vitro hemolysis assay—a common surrogate for cytolytic activity, we find that PDIM and ESX-1 differ in their contributions: the ESX-1 mutant loses hemolytic activity while PDIM retains it. Our observations confirm the involvement of PDIMs in phagosomal permeabilization in M. marinum infection and suggest that PDIM enhances the membrane disrupting activity of pathogenic mycobacteria and indicates that the role they play in damaging phagosomal and red blood cell membranes may differ.
format Online
Article
Text
id pubmed-7377490
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-73774902020-07-27 Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage Osman, Morwan M. Pagán, Antonio J. Shanahan, Jonathan K. Ramakrishnan, Lalita PLoS One Research Article Phthiocerol dimycocerosates (PDIMs) are a class of mycobacterial lipids that promote virulence in Mycobacterium tuberculosis and Mycobacterium marinum. It has recently been shown that PDIMs work in concert with the M. tuberculosis Type VII secretion system ESX-1 to permeabilize the phagosomal membranes of infected macrophages. As the zebrafish-M. marinum model of infection has revealed the critical role of PDIM at the host-pathogen interface, we set to determine if PDIMs contributed to phagosomal permeabilization in M. marinum. Using an ΔmmpL7 mutant defective in PDIM transport, we find the PDIM-ESX-1 interaction to be conserved in an M. marinum macrophage infection model. However, we find PDIM and ESX-1 mutants differ in their degree of defect, with the PDIM mutant retaining more membrane damaging activity. Using an in vitro hemolysis assay—a common surrogate for cytolytic activity, we find that PDIM and ESX-1 differ in their contributions: the ESX-1 mutant loses hemolytic activity while PDIM retains it. Our observations confirm the involvement of PDIMs in phagosomal permeabilization in M. marinum infection and suggest that PDIM enhances the membrane disrupting activity of pathogenic mycobacteria and indicates that the role they play in damaging phagosomal and red blood cell membranes may differ. Public Library of Science 2020-07-23 /pmc/articles/PMC7377490/ /pubmed/32701962 http://dx.doi.org/10.1371/journal.pone.0233252 Text en © 2020 Osman et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Osman, Morwan M.
Pagán, Antonio J.
Shanahan, Jonathan K.
Ramakrishnan, Lalita
Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage
title Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage
title_full Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage
title_fullStr Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage
title_full_unstemmed Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage
title_short Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage
title_sort mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377490/
https://www.ncbi.nlm.nih.gov/pubmed/32701962
http://dx.doi.org/10.1371/journal.pone.0233252
work_keys_str_mv AT osmanmorwanm mycobacteriummarinumphthioceroldimycocerosatesenhancemacrophagephagosomalpermeabilizationandmembranedamage
AT paganantonioj mycobacteriummarinumphthioceroldimycocerosatesenhancemacrophagephagosomalpermeabilizationandmembranedamage
AT shanahanjonathank mycobacteriummarinumphthioceroldimycocerosatesenhancemacrophagephagosomalpermeabilizationandmembranedamage
AT ramakrishnanlalita mycobacteriummarinumphthioceroldimycocerosatesenhancemacrophagephagosomalpermeabilizationandmembranedamage