Cargando…
CAMKIIγ is a targetable driver of multiple myeloma through CaMKIIγ/ Stat3 axis
Aberrant activation of CAMKIIγ has been linked to leukemia and T-cell lymphoma, but not multiple myeloma (MM). The purpose of this study was to explore the role of CaMKIIγ in the pathogenesis and therapy of MM. In this study, we found that CaMKIIγ was aberrantly activated in human MM and its express...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377902/ https://www.ncbi.nlm.nih.gov/pubmed/32658867 http://dx.doi.org/10.18632/aging.103490 |
Sumario: | Aberrant activation of CAMKIIγ has been linked to leukemia and T-cell lymphoma, but not multiple myeloma (MM). The purpose of this study was to explore the role of CaMKIIγ in the pathogenesis and therapy of MM. In this study, we found that CaMKIIγ was aberrantly activated in human MM and its expression level was positively correlated with malignant progression and poor prognosis. Ectopic expression of CaMKIIγ promoted cell growth, colony formation, cell cycle progress and inhibited apoptosis of MM cell lines, whereas, knockdown of CAMKIIγ expression suppressed MM cell growth in vitro and in vivo. Mechanically, we observed that CaMKIIγ overexpression upregulated p-ERK and p-Stat3 levels and suppression of CaMKIIγ had opposite effects. CaMKIIγ is frequently dysregulated in MM and plays a critical role in maintaining MM cell growth through upregulating STAT3 signaling pathway. Furthermore, our preclinical studies suggest that CaMKIIγ is a potential therapeutic target in MM, and could be intervened pharmacologically by small-molecule berbamine analogues. |
---|