Cargando…
A FRET-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases
Tankyrases catalyse poly-ADP-ribosylation of their binding partners and the modification serves as a signal for the subsequent proteasomal degradation of these proteins. Tankyrases thereby regulate the turnover of many proteins involved in multiple and diverse cellular processes, such as mitotic spi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378079/ https://www.ncbi.nlm.nih.gov/pubmed/32704068 http://dx.doi.org/10.1038/s41598-020-69229-y |
_version_ | 1783562339530833920 |
---|---|
author | Sowa, Sven T. Vela-Rodríguez, Carlos Galera-Prat, Albert Cázares-Olivera, Mariana Prunskaite-Hyyryläinen, Renata Ignatev, Alexander Lehtiö, Lari |
author_facet | Sowa, Sven T. Vela-Rodríguez, Carlos Galera-Prat, Albert Cázares-Olivera, Mariana Prunskaite-Hyyryläinen, Renata Ignatev, Alexander Lehtiö, Lari |
author_sort | Sowa, Sven T. |
collection | PubMed |
description | Tankyrases catalyse poly-ADP-ribosylation of their binding partners and the modification serves as a signal for the subsequent proteasomal degradation of these proteins. Tankyrases thereby regulate the turnover of many proteins involved in multiple and diverse cellular processes, such as mitotic spindle formation, telomere homeostasis and Wnt/β-catenin signalling. In recent years, tankyrases have become attractive targets for the development of inhibitors as potential therapeutics against cancer and fibrosis. Further, it has become clear that tankyrases are not only enzymes, but also act as scaffolding proteins forming large cellular signalling complexes. While many potent and selective tankyrase inhibitors of the poly-ADP-ribosylation function exist, the inhibition of tankyrase scaffolding functions remains scarcely explored. In this work we present a robust, simple and cost-effective high-throughput screening platform based on FRET for the discovery of small molecule probes targeting the protein–protein interactions of tankyrases. Validatory screening with the platform led to the identification of two compounds with modest binding affinity to the tankyrase 2 ARC4 domain, demonstrating the applicability of this approach. The platform will facilitate identification of small molecules binding to tankyrase ARC or SAM domains and help to advance a structure-guided development of improved chemical probes targeting tankyrase oligomerization and substrate protein interactions. |
format | Online Article Text |
id | pubmed-7378079 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-73780792020-07-24 A FRET-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases Sowa, Sven T. Vela-Rodríguez, Carlos Galera-Prat, Albert Cázares-Olivera, Mariana Prunskaite-Hyyryläinen, Renata Ignatev, Alexander Lehtiö, Lari Sci Rep Article Tankyrases catalyse poly-ADP-ribosylation of their binding partners and the modification serves as a signal for the subsequent proteasomal degradation of these proteins. Tankyrases thereby regulate the turnover of many proteins involved in multiple and diverse cellular processes, such as mitotic spindle formation, telomere homeostasis and Wnt/β-catenin signalling. In recent years, tankyrases have become attractive targets for the development of inhibitors as potential therapeutics against cancer and fibrosis. Further, it has become clear that tankyrases are not only enzymes, but also act as scaffolding proteins forming large cellular signalling complexes. While many potent and selective tankyrase inhibitors of the poly-ADP-ribosylation function exist, the inhibition of tankyrase scaffolding functions remains scarcely explored. In this work we present a robust, simple and cost-effective high-throughput screening platform based on FRET for the discovery of small molecule probes targeting the protein–protein interactions of tankyrases. Validatory screening with the platform led to the identification of two compounds with modest binding affinity to the tankyrase 2 ARC4 domain, demonstrating the applicability of this approach. The platform will facilitate identification of small molecules binding to tankyrase ARC or SAM domains and help to advance a structure-guided development of improved chemical probes targeting tankyrase oligomerization and substrate protein interactions. Nature Publishing Group UK 2020-07-23 /pmc/articles/PMC7378079/ /pubmed/32704068 http://dx.doi.org/10.1038/s41598-020-69229-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Sowa, Sven T. Vela-Rodríguez, Carlos Galera-Prat, Albert Cázares-Olivera, Mariana Prunskaite-Hyyryläinen, Renata Ignatev, Alexander Lehtiö, Lari A FRET-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases |
title | A FRET-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases |
title_full | A FRET-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases |
title_fullStr | A FRET-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases |
title_full_unstemmed | A FRET-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases |
title_short | A FRET-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases |
title_sort | fret-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378079/ https://www.ncbi.nlm.nih.gov/pubmed/32704068 http://dx.doi.org/10.1038/s41598-020-69229-y |
work_keys_str_mv | AT sowasvent afretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT velarodriguezcarlos afretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT galerapratalbert afretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT cazaresoliveramariana afretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT prunskaitehyyrylainenrenata afretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT ignatevalexander afretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT lehtiolari afretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT sowasvent fretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT velarodriguezcarlos fretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT galerapratalbert fretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT cazaresoliveramariana fretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT prunskaitehyyrylainenrenata fretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT ignatevalexander fretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases AT lehtiolari fretbasedhighthroughputscreeningplatformforthediscoveryofchemicalprobestargetingthescaffoldingfunctionsofhumantankyrases |