Cargando…
ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy
Ample clinical evidence suggests a high incidence of cardiovascular events in Alzheimer’s disease (AD), although neither precise etiology nor effective treatment is available. This study was designed to evaluate cardiac function in AD patients and APP/PS1 mutant mice, along with circulating levels o...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378833/ https://www.ncbi.nlm.nih.gov/pubmed/32703954 http://dx.doi.org/10.1038/s41392-020-0171-5 |
_version_ | 1783562509626638336 |
---|---|
author | Wang, Shuyi Wang, Lin Qin, Xing Turdi, Subat Sun, Dongdong Culver, Bruce Reiter, Russel J. Wang, Xiaoming Zhou, Hao Ren, Jun |
author_facet | Wang, Shuyi Wang, Lin Qin, Xing Turdi, Subat Sun, Dongdong Culver, Bruce Reiter, Russel J. Wang, Xiaoming Zhou, Hao Ren, Jun |
author_sort | Wang, Shuyi |
collection | PubMed |
description | Ample clinical evidence suggests a high incidence of cardiovascular events in Alzheimer’s disease (AD), although neither precise etiology nor effective treatment is available. This study was designed to evaluate cardiac function in AD patients and APP/PS1 mutant mice, along with circulating levels of melatonin, mitochondrial aldehyde dehydrogenase (ALDH2) and autophagy. AD patients and APP/PS1 mice displayed cognitive and myocardial deficits, low levels of circulating melatonin, ALDH2 activity, and autophagy, ultrastructural, geometric (cardiac atrophy and interstitial fibrosis) and functional (reduced fractional shortening and cardiomyocyte contraction) anomalies, mitochondrial injury, cytosolic mtDNA buildup, apoptosis, and suppressed autophagy and mitophagy. APP/PS1 mutation downregulated cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) levels and TBK1 phosphorylation, while promoting Aβ accumulation. Treatment with melatonin overtly ameliorated unfavorable APP/PS1-induced changes in cardiac geometry and function, apoptosis, mitochondrial integrity, cytosolic mtDNA accumulation (using both immunocytochemistry and qPCR), mitophagy, and cGAS-STING-TBK1 signaling, although these benefits were absent in APP/PS1/ALDH2(−/−) mice. In vitro evidence indicated that melatonin attenuated APP/PS1-induced suppression of mitophagy and cardiomyocyte function, and the effect was negated by the nonselective melatonin receptor blocker luzindole, inhibitors or RNA interference of cGAS, STING, TBK1, and autophagy. Our data collectively established a correlation among cardiac dysfunction, low levels of melatonin, ALDH2 activity, and autophagy in AD patients, with compelling support in APP/PS1 mice, in which melatonin rescued myopathic changes by promoting cGAS-STING-TBK1 signaling and mitophagy via an ALDH2-dependent mechanism. |
format | Online Article Text |
id | pubmed-7378833 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-73788332020-07-28 ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy Wang, Shuyi Wang, Lin Qin, Xing Turdi, Subat Sun, Dongdong Culver, Bruce Reiter, Russel J. Wang, Xiaoming Zhou, Hao Ren, Jun Signal Transduct Target Ther Article Ample clinical evidence suggests a high incidence of cardiovascular events in Alzheimer’s disease (AD), although neither precise etiology nor effective treatment is available. This study was designed to evaluate cardiac function in AD patients and APP/PS1 mutant mice, along with circulating levels of melatonin, mitochondrial aldehyde dehydrogenase (ALDH2) and autophagy. AD patients and APP/PS1 mice displayed cognitive and myocardial deficits, low levels of circulating melatonin, ALDH2 activity, and autophagy, ultrastructural, geometric (cardiac atrophy and interstitial fibrosis) and functional (reduced fractional shortening and cardiomyocyte contraction) anomalies, mitochondrial injury, cytosolic mtDNA buildup, apoptosis, and suppressed autophagy and mitophagy. APP/PS1 mutation downregulated cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) levels and TBK1 phosphorylation, while promoting Aβ accumulation. Treatment with melatonin overtly ameliorated unfavorable APP/PS1-induced changes in cardiac geometry and function, apoptosis, mitochondrial integrity, cytosolic mtDNA accumulation (using both immunocytochemistry and qPCR), mitophagy, and cGAS-STING-TBK1 signaling, although these benefits were absent in APP/PS1/ALDH2(−/−) mice. In vitro evidence indicated that melatonin attenuated APP/PS1-induced suppression of mitophagy and cardiomyocyte function, and the effect was negated by the nonselective melatonin receptor blocker luzindole, inhibitors or RNA interference of cGAS, STING, TBK1, and autophagy. Our data collectively established a correlation among cardiac dysfunction, low levels of melatonin, ALDH2 activity, and autophagy in AD patients, with compelling support in APP/PS1 mice, in which melatonin rescued myopathic changes by promoting cGAS-STING-TBK1 signaling and mitophagy via an ALDH2-dependent mechanism. Nature Publishing Group UK 2020-07-24 /pmc/articles/PMC7378833/ /pubmed/32703954 http://dx.doi.org/10.1038/s41392-020-0171-5 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Wang, Shuyi Wang, Lin Qin, Xing Turdi, Subat Sun, Dongdong Culver, Bruce Reiter, Russel J. Wang, Xiaoming Zhou, Hao Ren, Jun ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy |
title | ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy |
title_full | ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy |
title_fullStr | ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy |
title_full_unstemmed | ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy |
title_short | ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy |
title_sort | aldh2 contributes to melatonin-induced protection against app/ps1 mutation-prompted cardiac anomalies through cgas-sting-tbk1-mediated regulation of mitophagy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378833/ https://www.ncbi.nlm.nih.gov/pubmed/32703954 http://dx.doi.org/10.1038/s41392-020-0171-5 |
work_keys_str_mv | AT wangshuyi aldh2contributestomelatonininducedprotectionagainstappps1mutationpromptedcardiacanomaliesthroughcgasstingtbk1mediatedregulationofmitophagy AT wanglin aldh2contributestomelatonininducedprotectionagainstappps1mutationpromptedcardiacanomaliesthroughcgasstingtbk1mediatedregulationofmitophagy AT qinxing aldh2contributestomelatonininducedprotectionagainstappps1mutationpromptedcardiacanomaliesthroughcgasstingtbk1mediatedregulationofmitophagy AT turdisubat aldh2contributestomelatonininducedprotectionagainstappps1mutationpromptedcardiacanomaliesthroughcgasstingtbk1mediatedregulationofmitophagy AT sundongdong aldh2contributestomelatonininducedprotectionagainstappps1mutationpromptedcardiacanomaliesthroughcgasstingtbk1mediatedregulationofmitophagy AT culverbruce aldh2contributestomelatonininducedprotectionagainstappps1mutationpromptedcardiacanomaliesthroughcgasstingtbk1mediatedregulationofmitophagy AT reiterrusselj aldh2contributestomelatonininducedprotectionagainstappps1mutationpromptedcardiacanomaliesthroughcgasstingtbk1mediatedregulationofmitophagy AT wangxiaoming aldh2contributestomelatonininducedprotectionagainstappps1mutationpromptedcardiacanomaliesthroughcgasstingtbk1mediatedregulationofmitophagy AT zhouhao aldh2contributestomelatonininducedprotectionagainstappps1mutationpromptedcardiacanomaliesthroughcgasstingtbk1mediatedregulationofmitophagy AT renjun aldh2contributestomelatonininducedprotectionagainstappps1mutationpromptedcardiacanomaliesthroughcgasstingtbk1mediatedregulationofmitophagy |