Cargando…
Fermentation Improves Calcium Bioavailability in Moringa oleifera leaves and Prevents Bone Loss in Calcium‐deficient Rats
Nowadays, there is an increasing demand of healthier plant calcium supplements. Moringa oleifera leaves (MOL) are rich in calcium and thus are promising candidates for developing efficient calcium supplements. Here, using fermentation‐based approaches, we developed a Moringa oleifera leaf ferment (M...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382168/ https://www.ncbi.nlm.nih.gov/pubmed/32724632 http://dx.doi.org/10.1002/fsn3.1653 |
_version_ | 1783563199217401856 |
---|---|
author | Dai, Jiahe Tao, Liang Shi, Chongyin Yang, Shuwen Li, Depeng Sheng, Jun Tian, Yang |
author_facet | Dai, Jiahe Tao, Liang Shi, Chongyin Yang, Shuwen Li, Depeng Sheng, Jun Tian, Yang |
author_sort | Dai, Jiahe |
collection | PubMed |
description | Nowadays, there is an increasing demand of healthier plant calcium supplements. Moringa oleifera leaves (MOL) are rich in calcium and thus are promising candidates for developing efficient calcium supplements. Here, using fermentation‐based approaches, we developed a Moringa oleifera leaf ferment (MOLF), which contents higher levels of calcium. The therapeutic potential of the MOLF was also examined both in vitro and in vivo. Nine lactic acid bacteria and four yeasts were tested for better fermentation of MOL. Calcium‐deficient rats were used for evaluating the therapeutic effects of MOLF. The results of liquid fermentation showed that the mixture of Lactobacillus reuteri, Lactobacillus acidophilus , and Candida utilis elevated the content of MOL calcium most strikingly, with the content of calcium increased nearly 2.4‐fold (from 2.08% to 4.90%). The resulting MOLF was then subjected to cell experiments and animal experiments. The results showed that calcium absorption in Caco‐2 cells in MOLF group was higher than that in CaCl(2) group significantly. Interestingly, in calcium‐deficient rats, MOLF treatment significantly increased the thickness of cortical bone, rat body weight, wet weight of the femur, and the femur bone density, whereas it decreased osteoclast numbers. These results indicate that microbial fermentation increased calcium bioavailability of MOL, promote the growth and development of calcium‐deficient rats, bone calcium deposition, and bone growth; enhance bone strength; reduce bone resorption; and prevent calcium deficiency. |
format | Online Article Text |
id | pubmed-7382168 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73821682020-07-27 Fermentation Improves Calcium Bioavailability in Moringa oleifera leaves and Prevents Bone Loss in Calcium‐deficient Rats Dai, Jiahe Tao, Liang Shi, Chongyin Yang, Shuwen Li, Depeng Sheng, Jun Tian, Yang Food Sci Nutr Original Research Nowadays, there is an increasing demand of healthier plant calcium supplements. Moringa oleifera leaves (MOL) are rich in calcium and thus are promising candidates for developing efficient calcium supplements. Here, using fermentation‐based approaches, we developed a Moringa oleifera leaf ferment (MOLF), which contents higher levels of calcium. The therapeutic potential of the MOLF was also examined both in vitro and in vivo. Nine lactic acid bacteria and four yeasts were tested for better fermentation of MOL. Calcium‐deficient rats were used for evaluating the therapeutic effects of MOLF. The results of liquid fermentation showed that the mixture of Lactobacillus reuteri, Lactobacillus acidophilus , and Candida utilis elevated the content of MOL calcium most strikingly, with the content of calcium increased nearly 2.4‐fold (from 2.08% to 4.90%). The resulting MOLF was then subjected to cell experiments and animal experiments. The results showed that calcium absorption in Caco‐2 cells in MOLF group was higher than that in CaCl(2) group significantly. Interestingly, in calcium‐deficient rats, MOLF treatment significantly increased the thickness of cortical bone, rat body weight, wet weight of the femur, and the femur bone density, whereas it decreased osteoclast numbers. These results indicate that microbial fermentation increased calcium bioavailability of MOL, promote the growth and development of calcium‐deficient rats, bone calcium deposition, and bone growth; enhance bone strength; reduce bone resorption; and prevent calcium deficiency. John Wiley and Sons Inc. 2020-05-25 /pmc/articles/PMC7382168/ /pubmed/32724632 http://dx.doi.org/10.1002/fsn3.1653 Text en © 2020 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Dai, Jiahe Tao, Liang Shi, Chongyin Yang, Shuwen Li, Depeng Sheng, Jun Tian, Yang Fermentation Improves Calcium Bioavailability in Moringa oleifera leaves and Prevents Bone Loss in Calcium‐deficient Rats |
title | Fermentation Improves Calcium Bioavailability in Moringa oleifera leaves and Prevents Bone Loss in Calcium‐deficient Rats |
title_full | Fermentation Improves Calcium Bioavailability in Moringa oleifera leaves and Prevents Bone Loss in Calcium‐deficient Rats |
title_fullStr | Fermentation Improves Calcium Bioavailability in Moringa oleifera leaves and Prevents Bone Loss in Calcium‐deficient Rats |
title_full_unstemmed | Fermentation Improves Calcium Bioavailability in Moringa oleifera leaves and Prevents Bone Loss in Calcium‐deficient Rats |
title_short | Fermentation Improves Calcium Bioavailability in Moringa oleifera leaves and Prevents Bone Loss in Calcium‐deficient Rats |
title_sort | fermentation improves calcium bioavailability in moringa oleifera leaves and prevents bone loss in calcium‐deficient rats |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382168/ https://www.ncbi.nlm.nih.gov/pubmed/32724632 http://dx.doi.org/10.1002/fsn3.1653 |
work_keys_str_mv | AT daijiahe fermentationimprovescalciumbioavailabilityinmoringaoleiferaleavesandpreventsbonelossincalciumdeficientrats AT taoliang fermentationimprovescalciumbioavailabilityinmoringaoleiferaleavesandpreventsbonelossincalciumdeficientrats AT shichongyin fermentationimprovescalciumbioavailabilityinmoringaoleiferaleavesandpreventsbonelossincalciumdeficientrats AT yangshuwen fermentationimprovescalciumbioavailabilityinmoringaoleiferaleavesandpreventsbonelossincalciumdeficientrats AT lidepeng fermentationimprovescalciumbioavailabilityinmoringaoleiferaleavesandpreventsbonelossincalciumdeficientrats AT shengjun fermentationimprovescalciumbioavailabilityinmoringaoleiferaleavesandpreventsbonelossincalciumdeficientrats AT tianyang fermentationimprovescalciumbioavailabilityinmoringaoleiferaleavesandpreventsbonelossincalciumdeficientrats |