Cargando…
Validation tests for cryo-EM maps using an independent particle set
Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by providing 3D density maps of biomolecules at near-atomic resolution. However, map validation is still an open issue. Despite several efforts from the community, it is possible to overfit 3D maps to noisy data. Here, we devel...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385033/ https://www.ncbi.nlm.nih.gov/pubmed/32743544 http://dx.doi.org/10.1016/j.yjsbx.2020.100032 |
_version_ | 1783563695904784384 |
---|---|
author | Ortiz, Sebastian Stanisic, Luka Rodriguez, Boris A Rampp, Markus Hummer, Gerhard Cossio, Pilar |
author_facet | Ortiz, Sebastian Stanisic, Luka Rodriguez, Boris A Rampp, Markus Hummer, Gerhard Cossio, Pilar |
author_sort | Ortiz, Sebastian |
collection | PubMed |
description | Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by providing 3D density maps of biomolecules at near-atomic resolution. However, map validation is still an open issue. Despite several efforts from the community, it is possible to overfit 3D maps to noisy data. Here, we develop a novel methodology that uses a small independent particle set (not used during the 3D refinement) to validate the maps. The main idea is to monitor how the map probability evolves over the control set during the 3D refinement. The method is complementary to the gold-standard procedure, which generates two reconstructions at each iteration. We low-pass filter the two reconstructions for different frequency cutoffs, and we calculate the probability of each filtered map given the control set. For high-quality maps, the probability should increase as a function of the frequency cutoff and the refinement iteration. We also compute the similarity between the densities of probability distributions of the two reconstructions. As higher frequencies are included, the distributions become more dissimilar. We optimized the BioEM package to perform these calculations, and tested it over systems ranging from quality data to pure noise. Our results show that with our methodology, it possible to discriminate datasets that are constructed from noise particles. We conclude that validation against a control particle set provides a powerful tool to assess the quality of cryo-EM maps. |
format | Online Article Text |
id | pubmed-7385033 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-73850332020-07-30 Validation tests for cryo-EM maps using an independent particle set Ortiz, Sebastian Stanisic, Luka Rodriguez, Boris A Rampp, Markus Hummer, Gerhard Cossio, Pilar J Struct Biol X Article Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by providing 3D density maps of biomolecules at near-atomic resolution. However, map validation is still an open issue. Despite several efforts from the community, it is possible to overfit 3D maps to noisy data. Here, we develop a novel methodology that uses a small independent particle set (not used during the 3D refinement) to validate the maps. The main idea is to monitor how the map probability evolves over the control set during the 3D refinement. The method is complementary to the gold-standard procedure, which generates two reconstructions at each iteration. We low-pass filter the two reconstructions for different frequency cutoffs, and we calculate the probability of each filtered map given the control set. For high-quality maps, the probability should increase as a function of the frequency cutoff and the refinement iteration. We also compute the similarity between the densities of probability distributions of the two reconstructions. As higher frequencies are included, the distributions become more dissimilar. We optimized the BioEM package to perform these calculations, and tested it over systems ranging from quality data to pure noise. Our results show that with our methodology, it possible to discriminate datasets that are constructed from noise particles. We conclude that validation against a control particle set provides a powerful tool to assess the quality of cryo-EM maps. Elsevier 2020-07-21 /pmc/articles/PMC7385033/ /pubmed/32743544 http://dx.doi.org/10.1016/j.yjsbx.2020.100032 Text en © 2020 Published by Elsevier Inc. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ortiz, Sebastian Stanisic, Luka Rodriguez, Boris A Rampp, Markus Hummer, Gerhard Cossio, Pilar Validation tests for cryo-EM maps using an independent particle set |
title | Validation tests for cryo-EM maps using an independent particle set |
title_full | Validation tests for cryo-EM maps using an independent particle set |
title_fullStr | Validation tests for cryo-EM maps using an independent particle set |
title_full_unstemmed | Validation tests for cryo-EM maps using an independent particle set |
title_short | Validation tests for cryo-EM maps using an independent particle set |
title_sort | validation tests for cryo-em maps using an independent particle set |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385033/ https://www.ncbi.nlm.nih.gov/pubmed/32743544 http://dx.doi.org/10.1016/j.yjsbx.2020.100032 |
work_keys_str_mv | AT ortizsebastian validationtestsforcryoemmapsusinganindependentparticleset AT stanisicluka validationtestsforcryoemmapsusinganindependentparticleset AT rodriguezborisa validationtestsforcryoemmapsusinganindependentparticleset AT ramppmarkus validationtestsforcryoemmapsusinganindependentparticleset AT hummergerhard validationtestsforcryoemmapsusinganindependentparticleset AT cossiopilar validationtestsforcryoemmapsusinganindependentparticleset |