Cargando…
SomaticCombiner: improving the performance of somatic variant calling based on evaluation tests and a consensus approach
It is challenging to identify somatic variants from high-throughput sequence reads due to tumor heterogeneity, sub-clonality, and sequencing artifacts. In this study, we evaluated the performance of eight primary somatic variant callers and multiple ensemble methods using both real and synthetic who...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393490/ https://www.ncbi.nlm.nih.gov/pubmed/32732891 http://dx.doi.org/10.1038/s41598-020-69772-8 |
Sumario: | It is challenging to identify somatic variants from high-throughput sequence reads due to tumor heterogeneity, sub-clonality, and sequencing artifacts. In this study, we evaluated the performance of eight primary somatic variant callers and multiple ensemble methods using both real and synthetic whole-genome sequencing, whole-exome sequencing, and deep targeted sequencing datasets with the NA12878 cell line. The test results showed that a simple consensus approach can significantly improve performance even with a limited number of callers and is more robust and stable than machine learning based ensemble approaches. To fully exploit the multi-callers, we also developed a software package, SomaticCombiner, that can combine multiple callers and integrates a new variant allelic frequency (VAF) adaptive majority voting approach, which can maintain sensitive detection for variants with low VAFs. |
---|