Cargando…

Insulator-based loops mediate the spreading of H3K27me3 over distant micro-domains repressing euchromatin genes

BACKGROUND: Chromosomes are subdivided spatially to delimit long-range interactions into topologically associating domains (TADs). TADs are often flanked by chromatin insulators and transcription units that may participate in such demarcation. Remarkably, single-cell Drosophila TAD units correspond...

Descripción completa

Detalles Bibliográficos
Autores principales: Heurteau, Alexandre, Perrois, Charlène, Depierre, David, Fosseprez, Olivier, Humbert, Jonathan, Schaak, Stéphane, Cuvier, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397589/
https://www.ncbi.nlm.nih.gov/pubmed/32746892
http://dx.doi.org/10.1186/s13059-020-02106-z
Descripción
Sumario:BACKGROUND: Chromosomes are subdivided spatially to delimit long-range interactions into topologically associating domains (TADs). TADs are often flanked by chromatin insulators and transcription units that may participate in such demarcation. Remarkably, single-cell Drosophila TAD units correspond to dynamic heterochromatin nano-compartments that can self-assemble. The influence of insulators on such dynamic compartmentalization remains unclear. Moreover, to what extent heterochromatin domains are fully compartmentalized away from active genes remains unclear from Drosophila to human. RESULTS: Here, we identify H3K27me3 micro-domains genome-wide in Drosophila, which are attributed to the three-dimensional spreading of heterochromatin marks into euchromatin. Whereas depletion of insulator proteins increases H3K27me3 spreading locally, across heterochromatin borders, it concomitantly decreases H3K27me3 levels at distant micro-domains discrete sites. Quantifying long-range interactions suggests that random interactions between heterochromatin TADs and neighbor euchromatin cannot predict the presence of micro-domains, arguing against the hypothesis that they reflect defects in self-folding or in insulating repressive TADs. Rather, micro-domains are predicted by specific long-range interactions with the TAD borders bound by insulator proteins and co-factors required for looping. Accordingly, H3K27me3 spreading to distant sites is impaired by insulator mutants that compromise recruitment of looping co-factors. Both depletions and insulator mutants significantly reduce H3K27me3 micro-domains, deregulating the flanking genes. CONCLUSIONS: Our data highlight a new regulatory mode of H3K27me3 by insulator-based long-range interactions controlling distant euchromatic genes.